Identité et spécificités de la psychologie différentielle
Modulation des effets génétiques sur le fonctionnement exécutif et la mémoire de travail au cours du vieillissement normal

Christian Chicherio¹, Irène E. Nagel¹, Hauke R. Hekkeren¹,²,³, Shu-Chen Li¹,⁴, Lars Bäckman¹,⁴,⁵, & Ulman Lindenberger¹,⁴

Introduction

Au cours de ces dernières années, les études d'associations entre gènes et comportement ont souligné l'importance de polymorphismes spécifiques dans la cognition chez l'humain. Les chercheurs ont porté un intérêt croissant pour investiguer la manière avec laquelle les relations entre des variations génétiques endogènes et des phénomènes complexes (tels que le fonctionnement exécutif, la mémoire de travail, la mémoire épisodique et les fluctuations dans le traitement de l'information) se modifient au cours du développement chez l'adulte. En effet, le vieillissement cognitif est caractérisé par une importante hétérogénéité (voir Lindenberger & Chicherio, 2008). Des études longitudinales indiquent en outre que les différences individuelles dans le fonctionnement cérébral et la performance cognitive s'amplifient dès l'entrée dans l'âge adulte et jusqu'à un âge très avancé, reflétant ainsi l'influence de facteurs tant génétiques qu'environnementaux. La plupart des études d'associations se sont centrées sur le rôle du gène COMT (Catechol-O-methyltransferase) et de la modulaton dopaminergique dans le fonctionnement exécutif (Bäckman, Nyberg, Lindenberger, Li, & Farde, 2006). Ce polymorphisme génétique code en effet pour l'enzyme influençant la dégradation de la dopamine (DA) au sein du cortex préfrontal. Un autre gène associé au facteur neurotrophique dérivé du cerveau (BDNF) a reçu une attention particulière (voir Savitz, Solms, & Ramesar, 2006, pour une revue). Ce polymorphisme affecte la protéine BDNF associée à des mécanismes sous-tendant les processus de formation et consolidation en mémoire liés au lobe médiotemporal tels que la potentiation à long-terme et le liage perceptif (« binding » en anglais). D'autres travaux, enfin, soulignent chez l'adulte jeune l'importance de considérer les interactions entre gènes.

2. Charité University Medecine, Berlin.
5. Aging Research Center, Karoliniska Institute, Stockholm ; Adresse: Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Allemagne. Mel : seklindenberger@mpib-berlin.mpg.de
Deux objectifs principaux ont été poursuivis par la présente étude. Il s'agit d'une part de déterminer si le vieillissement normal « amplifie » les conséquences fonctionnelles des variations génétiques affectant la signalisation DA sur le fonctionnement exécutif et la mémoire de travail. D'autre part, il s'agit d'évaluer de quelle manière la relation entre le statut COMT et l'âge adulte est modulée par le génotype BDNF.

Méthode

Participants

Des participants adultes jeunes (20-30 ans ; n = 164 ; Mage±t = 25.2±3.2) et âgés (60-70 ans ; n = 154 ; Mage±t = 64.9±2.9), en bonne santé générale, ont pris part à cette recherche, qui s'intègre dans une étude à large échelle visant à tester si les relations entre l'âge adulte, la dopamine et la cognition sont modulées par des variations génétiques.

Échantillonnage sanguin et génotypage

L'ADN a été extrait à partir du sang périphérique selon des méthodes standard. Les polymorphismes de longueur de séquence simple Val158Met COMT et Val66Met BDNF ont été sélectionnés (dbSNP rs4680 et rs6265 : voir TaqMan® Drug Metabolism Genotyping Assays fourni par Applied Biosystems, Foster City, CA, USA). Après détermination du génotype, les individus ont été catégorisés selon la variante allélique des polymorphismes génétiques COMT (Val/Val, Val/Met, Met/Met) et BDNF (Val/Val, allèle Met combinant Val/Met et Met/Met). Il est à noter qu'en ce qui concerne le polymorphisme COMT, les porteurs de l'allèle Val présentent une moindre disponibilité extra-cellulaire de la DA que les individus homozygotes Met/Met ; la modulation DA devenant par conséquent moins efficace. En revanche, la sécrétion de BDNF est plus élevée chez les individus homozygotes Val, favorisant la transmission synaptique et la plasticité neuronale.

Épreuves

Deux épreuves informatisées ont été administrées aux participants pour évaluer le fonctionnement exécutif (voir Nagel et coll., 2008, pour plus de détails). Une adaptation de l'épreuve standard à 128 cartes du Wisconsin Card Sorting Test (WCST) a été utilisée. Pour cette tâche, les temps de réaction pour les réponses correctes ainsi que le pourcentage d'erreurs persévératives sont analysés. Une épreuve de mémoire de travail visuo-spatiale a été adaptée du paradigme de Klingberg et coll., 1997 ; cité par les auteurs). Dans cette tâche, une série de cercles se colorent brièvement et de manière séquentielle, sur une grille de 4 × 4. Les participants doivent, pour une série donnée, retenir la position de chaque cercle coloré (mémoire des positions) ainsi que leur séquence d'apparition (mémoire de la séquence). La précision et les latences des réponses correctes sont analysées, respectivement pour chaque type de traitement (mémoire des positions ou de la séquence) et niveau de charge en mémoire (séquence de 4 ou 7 cercles).
Modulation des effets génétiques sur le fonctionnement exécutif et la mémoire de travail au cours du vieillissement

Analyse statistiques

Des comparaisons entre groupes d’âge et entre génotypes ont été réalisées sur chaque des variables retenues à l’aide de modèles à effets-mixtes (‘Proc Mixed’ procedure) dans SAS 9.1 pour Windows (SAS Institute Inc., Cary, NC, USA). Ceux-ci permettent en effet de considérer les différences de variance-covariance entre groupes (âge et génotypes) et favorisent un test non biaisé de la significativité. La taille d’effet a été calculée par le biais du coefficient de corrélation intraclasse (pl).

Résultats

Des analyses de variance utilisant l’âge, le génotype COMT et le génotype BDNF comme facteurs intergroupes, et le genre considéré comme covariée, ont été effectuées tout d’abord sur le pourcentage d’erreurs persévératives au WCST. Les résultats montrent un effet significatif de l’âge, F (1,256) = 77.8, p<0.01, pl = 0.48 (expliquant 23.3 % de la variance dans les données). L’interaction âge × COMT, F (2,256) = 3.0, p<0.05, pl = 0.15 (2.3%), suggère un désavantage pour les adultes âgés homozygotes Val (en comparaison des âgés porteurs de l’allèle Met : t = -2.2, p = 0.03). Les résultats des analyses réalisées sur les latences montrent un effet significatif de l’âge, F (1,215) = 159.1, p<0.01, pl = 0.65 (42.5%) et du génotype COMT, F (2,214) = 4.2, p = 0.02, pl = 0.19 (3.8%) ainsi qu’une interaction âge × COMT, F (2,214) = 4.5, p<0.01, pl = 0.20 (4.1%). Plus intéressant, l’interaction double âge × COMT × BDNF, F (2,214) = 3.4, p = 0.03, pl = 0.18 (3.1%), indique que les individus âgés homozygotes Val sur le gène COMT et porteurs d’au moins un allèle Met sur le gène BDNF présentent des latences particulièrement ralenties (par rapport aux autres groupes d’individus âgés : t = -2.82, p<0.01 ; voir figure 1).

La performance dans l’épreuve de mémoire de travail visuospatiale a été examinée à l’aide d’analyses de variance utilisant l’âge, les génotypes COMT et BDNF, comme facteurs intergroupes, la charge en mémoire et le type de traitement, comme mesures répétées, et le genre comme covariée. En ce qui concerne la précision des réponses, aucun effet principal ou interaction impliquant l’un des deux gènes n’a été mis en évidence, hormis une interaction âge × COMT × BDNF × Charge, comme sur les latences, F (2,269) = 3.7, p = 0.02, pl = 0.16 (2.7% de la variance). Des analyses séparées par niveau de charge en mémoire ont été réalisées. Pour le niveau 4, les effets principaux de l’âge et du type de traitement sont significatifs (respectivement, F (1,256) = 289.0, p<0.01, pl = 0.73 (53,0%) et F (1,222) = 106.8, p<0.01, pl = 0.57 (32.5%)), ainsi qu’une interaction âge × Traitement F (1,222) = 4.0, p = 0.05, pl = 0.13 (1.8%). En outre, l’interaction âge × COMT, F (2,255) = 3.3, p = 0.04, pl = 0.16 (2.5%), suggère que les individus homozygotes Val par rapport aux porteurs de l’allèle Met présentent des latences ralenties dans l’échantillon des adultes âgés uniquement (t = -2.2, p = 0.03). Au niveau 7, les effets principaux de l’âge et du type de traitement sont significatifs, respectivement, F (1,261) = 131.7, p<0.01, pl = 0.58 (33,5%) et F (1,239) = 14.2, p<0.01, pl = 0.24 (5.6%). L’interaction double âge × COMT × BDNF, F (1,259) = 3.4, p = 0.03, pl = 0.16 (2.6%), suggère que les individus Val/Val sur le gène COMT et porteurs de l’allèle Met sur le gène BDNF présentent des temps de réponses particulièrement élevés (comparés aux autres groupes d’individus âgés, t = -2.55, p = 0.01).
Figure 1 : Temps moyen pour les réponses correctes dans l'épreuve WCST en fonction de l'âge, des génotypes COMT et BDNF. L'interaction âge × COMT × BDNF rend compte de 3.1 % de la variance.

Conclusion

Cette étude montre qu'un polymorphisme affectant l'enzyme COMT (dégradant la modulation dopaminergique dans le cortex préfrontal) module les différences individuelles dans le fonctionnement exécutif et la mémoire de travail. Cet effet est en outre « amplifié » par l'avance en âge. Enfin, l'effet COMT sur la cognition interagit avec un autre polymorphisme affectant le BDNF (associé à des processus associatifs en mémoire et à l'intégrité du cortex médio-temporal). Ainsi, le polymorphisme BDNF « exacerbe » le désavantage qu'éprouvent les adultes âgés se trouvant à un niveau sous-optimale de modulation dopaminergique. Ces données fournissent une évidence empirique de l'hypothèse de modulation des ressources de Lindenberger et coll. (2008). Celle-ci suggère qu'une fonction non linéaire relie les ressources cérébrales à la performance cognitive, de telle façon que les différences génétiques exercent un effet croissant sur la cognition à mesure que les ressources diminuent. En deçà d'un certain seuil de ressources cérébrales, les effets génétiques diminuent à nouveau. Par conséquent, les pertes chimiques et anatomiques sur le plan cérébral associées au vieillissement normal modulent les effets des variations génétiques sur le fonctionnement exécutif et la mémoire de travail (voir figure 2). Cette hypothèse pourrait être étendue à d'autres polymorphismes génétiques.
Il devient dès lors intéressant d'examiner plus en détail les interactions entre gènes en ciblant notamment les gènes associés aux principaux neurotransmetteurs qui interagissent avec la dopamine et affectent la performance cognitive. Ce travail souligne donc l'importance des interactions entre gènes pour mieux comprendre le développement cognitif chez l'adulte. Les facteurs génétiques renforcent les différences individuelles dans le vieillissement humain et contribuent à l'hétérogénéité plus marquée dans le fonctionnement cognitif jusqu'à tard dans la vie.

Bibliographie

