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Common wisdom tells us that more information can only help 
and never hurt. Goldstein and Gigerenzer (2002) highlighted an 
instance violating this intuition. Specifically, in an analysis of 
their recognition heuristic, they found a counterintuitive less-is-
more effect in inference: An individual recognizing fewer objects 
than another individual can, nevertheless, make more accurate 
inferences. Goldstein and Gigerenzer emphasized that a suffi-
cient condition for this effect is that the recognition validity be 
higher than the knowledge validity, assuming that the validities 
are uncorrelated with the number of recognized objects, n. But 
how is the occurrence of the less-is-more effect affected when 
this independence assumption is violated? I show that validity 
dependencies (i.e., correlations of the validities with n) abound 
in empirical data sets, and I demonstrate by computer simula-
tions that these dependencies often have a strong limiting effect 
on the less-is-more effect. Moreover, I discuss what cognitive 
(e.g., memory) and ecological (e.g., distribution of the criterion 
variable, environmental frequencies) factors can give rise to a 
dependency of the recognition validity on the number of recog-
nized objects. Supplemental materials may be downloaded from 
http://pbr.psychonomic-journals.org/content/supplemental.

You have just bought the latest electronic gadget (e.g., 
an iPad) and want to know how long it will take you to 
perform a certain task with it. Whom should you ask: an 
expert (who knows a lot about the gadget), a novice (like 
yourself ), or someone with intermediate knowledge? 
Surprisingly, experts are often no better than novices in 
making such predictions, whereas people with intermedi-
ate knowledge outperform both groups (Hinds, 1999). In 
other words, too much knowledge can be a curse (for other 
examples, see Hertwig & Todd, 2003). Such results seem 
counterintuitive, since common sense tells us that more 
information cannot hurt. After all, what can be done with 
less information can also be done with more.

Goldstein and Gigerenzer (2002) illustrated that too 
much knowledge can also hamper one’s ability to make 
inferences about the world. Specifically, analyzing the 
implications of the recognition heuristic—according to 
which a recognized object is inferred to score higher on 
some criterion than an unrecognized object—they found 
that the heuristic can predict a less-is-more effect: A per-
son who has heard of only a subset of the objects in a 

certain domain and uses the recognition heuristic to infer 
their properties (e.g., the number of inhabitants of French 
cities) can sometimes be more accurate than a person who 
has heard of all of the objects.

Goldstein and Gigerenzer (2002) highlighted an ap-
parently key condition for the occurrence of this effect. 
The probability of getting a correct answer merely on the 
basis of recognition (i.e., that one has heard of an object 
before) must be greater than the probability of getting a 
correct answer using more information. Analytically, this 
result holds under the assumption that both probabilities 
are uncorrelated with the number of recognized objects. 
Goldstein and Gigerenzer noted that this independence 
assumption might not hold in empirical data, and I show 
below that, empirically, it is indeed often violated. In 
this article, such correlations will be referred to as valid-
ity dependencies. What are the consequences of validity 
dependencies for the less-is-more effect? In computer 
simulations, I demonstrate that the pattern of validity de-
pendencies that is usually present in the real world works 
against the effect. In addition, I discuss cognitive and eco-
logical factors that might give rise to a dependency of the 
recognition validity on the number of recognized objects.

The Less-Is-MoRe effecT

Goldstein and Gigerenzer (2002) highlighted the im-
portant function of recognition in decision making and 
proposed the recognition heuristic as one way of how 
people might exploit recognition to make inferences. The 
model of the heuristic assumes that recognition is used in a 
noncompensatory way: A recognized object is inferred to 
have a larger criterion value than an unrecognized object, 
irrespective of further cue knowledge (for empirical sup-
port and boundary conditions, see Marewski, Gaissmaier, 
Schooler, Goldstein, & Gigerenzer, 2010; Pachur, Bröder, 
& Marewski, 2008; Pachur & Hertwig, 2006; but see, e.g., 
Hilbig & Pohl, 2008). Using recognition to make infer-
ences about the world is often a useful strategy because 
recognition of an object is frequently correlated with other 
properties of the object. This correlation arises because 
people learn of names of objects from mediators in the 
environment, such as the news media. Objects with larger 
criterion values tend to be mentioned more frequently 
(thus increasing the chance of the objects’ being recog-
nized) in the mediator than are objects with small criterion 
values (Goldstein & Gigerenzer, 2002). The proposal of 
the recognition heuristic has led to an interesting debate 
on the mechanisms and implications of using recognition 
in decision making and how to model it (e.g., Dougherty, 
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Britta, although she has heard of fewer French cities than 
Clemens, will achieve the highest number of correct infer-
ences. This example illustrates the less-is-more effect: A 
person who has heard of fewer objects than another person 
can still achieve a higher inferential accuracy.

Various types of less-is-more effects can be distinguished, 
depending on whether different levels of knowledge reflect 
changes within a person over time (e.g., through learn-
ing), persons with different levels of expertise in a domain 
(e.g., laypeople vs. experts), or different domains (although 
between- domain less-is-more effects can be more difficult 
to establish; Dougherty et al., 2008). My analysis of the 
impact of validity dependencies applies to all types of less-
is-more effects—that is, wherever inferential accuracy is 
analyzed as a function of knowledge (irrespective of the 
source of variation in such knowledge).

Analytical investigations into the robustness and scope 
of the less-is-more effect have yielded several interesting 
results. For instance, the effect can also occur in tasks that 
involve comparisons among more than two objects (Mc-
Cloy, Beaman, & Smith, 2008), as well as in group decision 
making (Reimer & Katsikopoulos, 2004); Pleskac (2007) 
and Katsikopoulos (in press) investigated how imperfect 
recognition memory influences the effect, and Schooler and 
Hertwig (2005) demonstrated that a less-is-more effect can 
also arise through forgetting. In addition, Dougherty et al. 
(2008) showed how the less-is-more effect can arise—in 
certain environments—through a familiarity-based mecha-
nism. These developments represent important extensions of 
Goldstein and Gigerenzer’s (2002) model of the recognition 
heuristic. Although its formal character represents a huge 
improvement over ill-specified labels (such as availability; 
see, e.g., Gigerenzer, 1996), crucial processes contribut-
ing to recognition-based inference, such as the recognition 
process, were not formalized in Goldstein and Gigerenzer’s 
model. A possible consequence of such an omission is dis-
cussed in the final part of the present article.

conditions for the Less-Is-More effect
Goldstein and Gigerenzer (2002) showed mathemati-

cally that a less-is-more effect will occur if the recognition 
validity α is larger than the knowledge validity β (although 
this is not a necessary condition; see Katsikopoulos, in 
press). In this analysis, it was supposed that α and β remain 
constant across different levels of recognition knowledge. 
As they noted, however, “in the real world, the recognition 
and knowledge validities usually vary when one individ-
ual learns to recognize more and more objects from expe-
rience” (p. 80). Therefore, Goldstein and Gigerenzer ran 
a computer simulation that learned the names of German 
cities according to empirical recognition rates (i.e., the 
proportion of participants recognizing the city) and recal-
culated α for each (increasingly larger) set of recognized 
cities. The recognition validity could thus vary across 
different levels of recognition knowledge; nevertheless, 
a less-is-more effect still emerged (see their Figure 3). Al-
though this simulation shows that α does not need to be 
constant for a less-is-more effect to occur, it is currently 
unclear how the effect is affected when α (and β) correlate 
with the number of recognized objects, n (cf. Dougherty 

Franco-Watkins, & Thomas, 2008; Gigerenzer, Hoffrage, 
& Goldstein, 2008; Hilbig & Pohl, 2009; for an overview, 
see Pachur, Todd, Gigerenzer, Schooler, & Goldstein, in 
press).

An intriguing aspect of Goldstein and Gigerenzer’s 
(2002) model of the recognition heuristic is its predic-
tion that less can be more under specific circumstances 
(detailed below). For illustration of the effect, consider 
three people: Arthur, Britta, and Clemens. Each of them 
is asked (separately) to make inferences about the relative 
size of the 20 largest French cities. Arthur knows only a 
little about French cities and has heard of 4 of the 20 cit-
ies. Britta has heard of 15 cities. Clemens is a student of 
French and has heard of all 20 cities. The inference task 
consists of pair comparisons, where each city is compared 
with every other. Let us assume that whenever Arthur, 
Britta, and Clemens are presented with a pair of cities 
where they recognize only one city, they apply the recog-
nition heuristic. When they recognize both cities, they use 
further knowledge about French cities. When they recog-
nize neither city in a pair, they guess.

The overall proportion of correct inferences that Arthur, 
Britta, and Clemens each achieves can be calculated from 
the number of objects, n, that are recognized of the total 
number of objects, N, using Equation 1 (cf. Goldstein & 
Gigerenzer, 2002):
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Each individual’s accuracy will, thus, depend on two pa-
rameters: (1) the recognition validity, α, defined as the 
proportion of correct inferences on pairs where only one 
city is recognized; and (2) the knowledge validity, β, 
defined as the proportion of correct inferences on pairs 
where both cities are recognized. If we assume an α of .80 
and a β of .70 for all 3 individuals, Figure 1 shows that 
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figure 1. Less-is-more effects illustrated for a recognition valid-
ity of α 5 .8 and a knowledge validity of β 5 .7. The performance 
of Arthur, Britta, and clemens is indicated by the three points 
on the curve.
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In a forecasting study, Pachur and Biele (2007) asked, 
for the matches of the 2004 European Soccer Champi-
onships, which team the participants thought was more 
likely to win. Although the average recognition validity 
was higher than the average knowledge validity,1 accuracy 
increased monotonically across different levels of recog-
nized teams. The highest accuracy was achieved by those 
participants who had heard of all or almost all teams.

Overall, one may thus argue that the empirical evidence 
for less-is-more effects in inference tasks is mixed. What 
if one takes a more comprehensive look that also includes 
studies that have not explicitly tested the less-is-more ef-
fect? Figure 2 plots—for a total of 10 data sets spanning 
various domains, in all of which the average recognition 
validity was larger than the average knowledge validity—
the accuracy of individual participants as a function of the 
number of recognized objects (further details about the data 
sets are given in Table 1).2 Since tests of between- domains 
less-is-more effects can be ambiguous (Dougherty et al., 
2008), and since tests of across-time less-is-more effects are 
rare (e.g., Goldstein & Gigerenzer, 2002), I focus on less-is-
more effects across participants.3 The pattern in each data 
set is summarized by locally weighted polynomial regres-
sion (LOESS) lines (see, e.g., Cleveland & Devlin, 1988). 
As can be seen, in some data sets, there are indications of a 
less-is-more effect; in others, there are not.

cues In nATuRAL envIRonMenTs 
validity Dependencies

Why is the less-is-more effect sometimes difficult to 
find empirically? As mentioned above, one possibility is 
that the effect is often small and can thus easily get masked 
by noise in empirical data. For instance, for an α of .8 and 
a β of .7 (assuming they are constant across n), Equation 1 
yields a predicted size of the less-is-more effect (defined 
as the difference between the maximum accuracy and the 
accuracy with full knowledge) of merely 2.6%. Second, it 
is possible that people only rarely rely on the recognition 
heuristic: Hilbig, Erdfelder, and Pohl (2010) showed that 
a compensatory processing of recognition can diminish or 
even destroy the less-is-more effect.

A third possibility was pointed out by Pachur and Biele 
(2007), who observed validity dependencies: Participants 
who recognized more objects also tended to have higher 
recognition validities and knowledge validities, violat-
ing Goldstein and Gigerenzer’s (2002) independence as-
sumption. Because α and β are the main determinants of 
a person’s overall accuracy (see Equation 1), “a system-
atic trend toward higher values . . . when more teams are 
recognized . . . means that with increasing n the overall 
forecasting accuracy increases as well—the opposite of a 
less-is-more pattern” (p. 112).

How general is Pachur and Biele’s (2007) observation 
of validity dependencies? Table 1 reports for each of the 
10 data sets shown in Figure 2 the corresponding correla-
tion of α with n, r(α, n), and the correlation of β with n, 
r(β, n). In the majority of the data sets, the correlations are 
substantial. Interestingly, the values for r(α, n) are some-
times positive and sometimes negative, whereas the values 

et al., 2008). Below, I show that a correlation of α or β with 
n can be critical for the occurrence of the less-is-more ef-
fect. Before I turn to this analysis, I give an overview of 
the empirical support for the less-is-more effect.

empirical evidence
Can the less-is-more effect be observed empirically? As 

a cautionary note, in many situations, the predicted size 
of the less-is-more effect is very small, which would lead 
to statistically significant differences only with extremely 
large sample sizes. This might be one reason why empiri-
cal tests of the effect often rely on simple comparisons of 
accuracy levels with full versus incomplete knowledge, 
without running significance tests (there are exceptions; 
see below). In the studies mentioned in the following over-
view, no significance test was reported, unless noted.

Goldstein and Gigerenzer (2002) reported two dem-
onstrations in support of the less-is-more effect. In the 
first, they asked a group of American participants to judge 
which of two cities is larger, both for the 22 largest Ger-
man cities and for the 22 largest American cities. The 
participants knew relatively little about German cities; 
in fact, they had heard of, on average, only about half of 
the cities. Nevertheless, participants achieved a slightly 
higher percentage of correct inferences for the German 
than for the American cities.

In Goldstein and Gigerenzer’s (2002) second demon-
stration, German participants learned to recognize, across 
a period of 4 weeks, the names of American cities that 
they had previously not heard of. Despite this increase in 
recognition knowledge, participants’ inferential accuracy 
dropped significantly from Week 1 to 4.

Using a different domain, Snook and Cullen (2006) 
asked participants to judge which of two National Hockey 
League (NHL) players had achieved a larger number of 
career points. Participants varied greatly in terms of their 
knowledge about NHL players: Some had heard of more 
than 100 players, whereas others had heard of only 20. 
Participants who had heard of many players, however, did 
not achieve a higher proportion of correct judgments than 
relatively ignorant participants did. A regression analysis 
based on the observed data suggested a quadratic relation-
ship between the amount of recognized players and accu-
racy, with the estimated accuracy decreasing for higher lev-
els of recognition knowledge. Similarly,  Frosch, Beaman, 
and McCloy (2007) found (using a within- participants 
analysis) that participants scored significantly better in 
picking, from a set of Britons, the wealthiest one when 
they did not recognize all individuals in the set, as com-
pared with when they recognized all of them.

Other studies have failed to find a (numerical) less-is-
more effect, even when α was greater than β. For instance, 
comparing German participants’ accuracy in judging the 
sizes of German, Belgian, and Italian cities, Pohl (2006, 
Experiment 3) reported that participants achieved a sig-
nificantly higher accuracy in the domains for which they 
had the most knowledge (German cities) than for the do-
mains about which they were more ignorant (the average 
knowledge validity for German cities was lower than the 
average recognition validities for the other domains).
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have a major impact on the occurrence of the less-is-more 
effect (for a related analysis, see Smithson, in press). Is 
there support for this conjecture? If there is, how large 
is the relative impact of α’s and β’s correlation with n on 
the effect?

To answer these questions, I ran a computer simula-
tion that sequentially learned the names of 100 objects 
(yielding 100 levels of n 5 1 . . . 100). The average rec-
ognition validity (across all levels of n) was set at .8, and 
the average knowledge validity was set at .7—a situation 
for which, assuming validity independence, Goldstein and 
Gigerenzer (2002) predicted a pronounced less-is-more 

for r(β, n) are mostly positive—an issue discussed fur-
ther below. In the following, I first examine, via computer 
simulations, the impact of validity dependencies on the 
less-is-more effect. Then, I consider possible reasons for 
the emergence of these dependencies.

vALIDITy DePenDencIes 
What Is Their Impact on the Less-Is-More effect?

In this section, I systematically examine Pachur and 
Biele’s (2007) conjecture that validity dependencies—that 
is, correlations between α and n and between β and n—can 
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figure 2. The relationship between the observed inference accuracy and the number of recognized objects in 10 empirical data sets. 
each dot represents 1 participant. The lines represent locally weighted polynomial regression (Loess) lines. note that, in all data 
sets, α . β.

Table 1 
Relative changes of the Prevalence and size of the Less-Is-More effect

Relative Change of LIM

Prevalence Size 
Study  Domain  α (M )  β (M )  r(α, n)  r(β, n)   of LIM  of LIM

Snook & Cullen (2006) Career points of NHL player .84 .80 .14 .23 291.7% 291.8%
Pohl (2006, Experiment 1) Population of Swiss cities .86 .75 .02 .17 233.0% 237.3%
Pohl (2006, Experiment 3) Population of Italian cities .82 .73 .19 .22 247.2% 248.6%
Pohl (2006, Experiment 3) Population of Belgian cities .89 .75 2.13 .06 26.4% 217.4%
Pohl (2006, Experiment 4) Size of islands .84 .66 .77 2.04 215.8% 23.8%
Pachur & Biele (2007, laypeople) Success of soccer teams .71 .60 .19 .22 236.6% 239.7%
Hertwig, Herzog, Schooler, & Reimer (2008) Sales of music artists .61 .57 .32 .16 259.1% 241.5%
Hertwig et al. (2008) Population of American cities .83 .68 2.17 .18 214.0% 236.1%
Hertwig et al. (2008) Profit of companies .74 .60 2.18 .13 22.2% 227.3%
Pachur, Mata, & Schooler (2009, young adults) Population of American cities .91 .76 2.52 .38 260.1% 285.1%

Note—LIM, less-is-more effect; NHL, National Hockey League. The relative change of the prevalence of the LIM was calculated as (LIM preva-
lencedependent 2 LIM prevalenceindependent)/LIM prevalenceindependent 3 100. The relative change of the size of LIM was calculated accordingly.
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indicated in the corresponding cell in the “n vector.” In 
this original form, the two validity vectors were corre-
lated perfectly with the n vector. To create correlations of 
r(α, n) , 1 and r(β, n) , 1, I reordered a randomly cho-
sen subset of the cells in the validity vectors, with larger 
subsets for smaller correlations. For instance, reordering 
60% of the cells led to an average correlation of around 
.404. For negative correlations, the validity vectors were 
flipped. Using the resulting values, I calculated the overall 
accuracy for each level of n according to Equation 1.4 For 
each of the 121 conditions, there were 100,000 runs.

Results
Figure 3 shows the average accuracy (across all runs) 

at different levels of n. For simplicity, results are shown 

effect. The correlation between the recognition validity 
and the number of recognized objects [r(α, n)] and the 
correlation between the knowledge validity and the num-
ber of recognized objects [r(β, n)] were varied between 
21 and 1 in steps of .2. This yielded a total of 11 3 11 5 
121 conditions.

I manipulated r(α, n) and r(β, n) as follows. First, I 
created a vector of length 100, representing different val-
ues of α, ranging from .60 to 1 (in steps of .004, yield-
ing an average of .8); a vector of length 100, representing 
different values of β, ranging from .5 to .9 (in steps of 
.004, yielding an average of .7); and a vector representing 
the different levels of n, ranging from 1 to 100. Each cell 
in the “validity vectors” represented the values of α and 
β, respectively, given the number of recognized objects 
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figure 3. occurrence of the less-is-more effect as a function of the correlation of the recognition validity α and the knowledge validity 
β with the number of recognized objects n.
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a decrease, and a negative r(β, n) leads to an increase, of 
the prevalence of less-is-more effects. The third result is 
that the influence of r(β, n) is considerably stronger than 
the influence of r(α, n). As a consequence, even when 
r(α, n) and r(β, n) have antagonistic effects, the influence 
of r(β, n) will prevail. For example, the decrease of the 
prevalence of less-is-more effects when r(β, n) 5 .2 can-
not be compensated, even when r(α, n) 5 1.

size of the less-is-more effect. The right panel of 
Figure 4 shows the results for the size of the less-is-
more effect, defined as the difference between maxi-
mum accuracy and accuracy with full knowledge (i.e., 
when n 5 N ). The white dot indicates the result when 
r(α, n) 5 r(β, n) 5 0. As can be seen, again, both r(α, n) 
and r(β, n) have an influence on the size of the less-is-
more effect, their influences are antagonistic, and the 
influence of r(β, n) is much stronger than the influence 
of r(α, n). Moreover, a positive r(β, n) decreases, and 
a negative r(β, n) increases, the size of the effect. In 
contrast to the influence on the prevalence of the less-
is-more effect, however, the direction of the influence 
of r(α, n) on the size of the effect does not depend on 
the sign of r(β, n): A positive r(α, n) increases, and a 
negative r(α, n) decreases, the size of the effect. As a 
consequence, when the correlation between n and β is 
negative, there can be the interesting situation where a 
positive r(α, n) decreases the prevalence of (as shown 
above), but increases the size of, the less-is-more effect, 
or, conversely, where a negative r(α, n) increases the 
prevalence of, but decreases the size of, the less-is-more 
effect. Note, however, that this situation may arise rarely 
in the real world, since negative correlations between n 
and β are infrequent (see Table 1).

only for nine conditions resulting from combining three 
levels (2.6, 0, and .6) of r(α, n) with the same three lev-
els of r(β, n). The function relating accuracy to n differs 
greatly among the conditions. In some conditions, there is 
no less-is-more effect; in others, the effect is amplified as 
compared with the condition where r(α, n) 5 r(β, n) 5 0 
(shown in the center panel in Figure 3). Recall that, in all 
conditions, α . β.

Prevalence of less-is-more effects. To quantify the 
less-is-more effect, I define it formally as the situation 
in which there exist two levels of the number of recog-
nized objects, n1 and n2, so that n1 , n2, but f (n1) . f (n2), 
where f (n) is the accuracy as a function of the number 
of objects recognized, n (cf. Reimer & Katsikopoulos, 
2004). For each condition, I determined the prevalence of 
less-is-more effects as the proportion of pairs (n1, n2) with 
n1  n2, for which the less-is-more effect occurs.

The left panel in Figure 4 shows the prevalence of less-
is-more effects as a function of the size of r(α, n) and 
r(β, n). The white dot indicates the result under validity 
independence—that is, when r(α, n) 5 r(β, n) 5 0.

There are three main results. First, both r(α, n) and 
r(β, n), if nonzero, have an influence on the prevalence 
of less-is-more effects. Second, there is an interaction be-
tween r(α, n) and r(β, n). If r(β, n) # 0, a positive cor-
relation between α and n leads to a decrease, and a nega-
tive correlation leads to an increase of the prevalence of 
less-is-more effects. If r(β, n) . 0, however, the opposite 
pattern holds. That is, a positive correlation between α 
and n leads to an increase, and a negative correlation leads 
to a decrease of the prevalence of less-is-more effects. The 
direction of the influence of r(β, n), by contrast, is inde-
pendent of the sign of r(α, n): A positive r(β, n) leads to 
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figure 4. The prevalence of the less-is-more effect (left panel) and the size of the less-is-more effect (right panel) as a function of 
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white dots indicate where α and β are uncorrelated with n.
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WhAT GIves RIse To  
vALIDITy DePenDencIes?

Validity dependencies have a strong impact on the occur-
rence of the less-is-more effect. How do these dependencies 
arise? The correlation between n and β is usually positive 
(see Table 1), which, in all likelihood, simply reflects that 
individuals who recognize many objects tend to possess 
more cue knowledge, know better cues, and/or use the cues 
more effectively (cf. Dougherty et al., 2008). For the corre-
lation between n and α, however, both positive and negative 
values are observed (Table 1). Before discussing ways in 
which correlations between n and α might arise, it is help-
ful to clarify what a correlation between n and α means. 
Interestingly, a derivation of the association between α and 
n based on the known relationship between cue validities 
and the U value of the Mann–Whitney test (see the Appen-
dix; cf. Martignon & Hoffrage, 2002), yields that

 
α( ) .n

r
=

+1 s

2  (2)

In other words, α should be independent of n. The incon-
sistency between this and the empirical results suggests 
that—in contrast to the assumption in the derivation—
empirically, the difference between an object’s relative 
criterion value and its relative probability of being recog-
nized differs systematically across objects. A correlation 

In summary, the computer simulation shows that valid-
ity dependencies can influence the prevalence and size 
of less-is-more effects dramatically. This holds, in par-
ticular, for a dependency of β on n. If this dependency is 
negative, the less-is-more effect is more likely to occur 
(i.e., it is more prevalent and larger) than when one as-
sumes validity independence (the situation analyzed in 
Goldstein & Gigerenzer’s, 2002, mathematical analysis); 
if this dependency is positive, the less-is-more effect is 
rather unlikely to occur. Since r(β, n) is usually positive 
(see Table 1) in natural environments, the less-is-more 
effect will typically be small (or even wiped out).

Implications of these results are illustrated in Figure 5, 
which shows, for the 10 data sets listed in Table 1, the pre-
dicted accuracy curves for both the situation where α and β 
are independent of n (dashed line) and the situation where 
r(α, n) and r(β, n) take on the empirically observed values 
reported in Table 1 (solid line).5 The two rightmost columns 
in Table 1 show the relative changes in the prevalence and 
size of the less-is-more effect, respectively, under validity 
dependence and validity independence. For the majority 
of the data sets, both the prevalence and the size of the 
less-is-more effect are greatly reduced. For instance, for 
Snook and Cullen’s (2006) data set, the prevalence rate of 
less-is-more effects under validity dependence is reduced 
by more than 90% of the prevalence rate when r(α, n) 5 
r(β, n) 5 0 (i.e., a drop from 2.4% to 0.2%).
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figure 5. The predicted relationships between inference accuracy and the number of recognized objects for the 10 data sets in 
Table 1, either assuming that α and β are independent of n (dashed line) or assuming the empirically observed dependencies (solid 
line; see Table 1).
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Dynamic environments. In competitive domains 
(e.g., stock market, sports), the pecking order among the 
competitors often does not remain stable for long. Be-
cause the incentive to rise in rank is higher among higher 
ranked competitors, changes in rank among the top com-
petitors are more likely than changes among lower ranked 
competitors. Because recognition responds to changes in 
criterion ranks rather slowly (but see Schooler & Hertwig, 
2005; Serwe & Frings, 2006), it will be a worse predic-
tor for the high-ranked objects than for the entire set of 
objects, giving rise to a positive correlation between n 
and α.6

Biases in the mediator. A correlation between n and α 
can also arise due to specific error patterns in the “media-
tor” responsible for a connection between recognition and 
the criterion (Goldstein & Gigerenzer, 2002). In mediating 
the criterion, the mediator can make two distinct types of 
errors. First, the mediator can (falsely) give a lot of atten-
tion to an object that has a low criterion value, thus com-
mitting a “false alarm.” Second, the mediator can (falsely) 
give little attention to an object, even though it has a high 
criterion value, thus committing a “miss.” If one of these 
two types of errors—false alarms or misses—prevails in a 
particular environment (assuming that, otherwise, the me-
diator reflects the criterion reliably), a correlation between 
n and α will arise (i.e., false alarms and misses will give 
rise to positive and negative correlations, respectively).

suMMARy AnD concLusIons

An overview of various data sets revealed that validity 
dependencies are common in the real world. Extending 
the analysis by Goldstein and Gigerenzer (2002), I showed 
that validity dependencies can have dramatic implications 
for the prevalence and size of the less-is-more effect. 
If there is a positive correlation between the number of 
recognized objects and the knowledge validity—a com-
mon constellation in the real world—less-is-more effects 
are unlikely to occur, even if the recognition validity is 
higher than the knowledge validity. That is, once the in-
dependence assumption is violated, α . β is no longer a 
sufficient condition for the effect. A positive association 
of the number of recognized objects with the recognition 
validity, by contrast, can amplify the less-is-more effect, 
but this impact is rather weak. Aspects of the environment 
and memory can give rise to a correlation between the 
number of recognized objects and the recognition validity. 
The results offer one explanation why, in the real world, 
occurrences of the less-is-more effect may be rather rare. 
More important, they help specify the situations in which 
the effect is predicted to occur.
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between α and n thus implies that recognition predicts the 
criterion value better for larger objects than for smaller 
objects (yielding a negative correlation) or vice versa 
(yielding a positive correlation). (A detailed description 
of this argument can be found in the online supplemental 
material.) In the following, I discuss how memory and 
characteristics of the environment could give rise to the 
asymmetric distribution of recognition validities that a 
correlation between α and n implies.

Memory
Computer simulations using the MINERVA memory 

model (Hintzman, 1988), described in the online supple-
mental material, show that a negative correlation between 
n and α can arise as a result of an interaction between 
memory and the structure of the environment. The ratio-
nale is as follows. Recognition results from encountering 
objects in the environment (e.g., in the media). For in-
stance, the more frequently the name of a tennis player is 
cited in the newspaper, the more likely a person is to have 
heard of him. A lower citation frequency, by contrast, pro-
duces a lower familiarity signal in memory, leading (in 
the presence of random error) to less accurate recogni-
tion judgments. The distribution of citation frequencies 
is often skewed, where a large proportion of objects are 
cited only infrequently in the news and few objects are 
cited very frequently. In such a skewed distribution, when 
many objects have been encountered, recognition judg-
ments will less accurately reflect whether there actually 
was an encounter than when only a few objects have been 
encountered. Less accurate recognition judgments result 
in a lower α (Pleskac, 2007), and α thus decreases with 
increasing n, yielding a negative correlation between α 
and n. This analysis illustrates the value of specifying a 
process model of the recognition heuristic that includes a 
formal account of the recognition process, which Gold-
stein and Gigerenzer’s (2002) model left unspecified (cf. 
Dougherty et al., 2008; Dougherty, Gettys, & Ogden, 
1999; Marewski & Schooler, 2010).

environment
In addition to an interplay between the mind and the 

environment, aspects of the structure of the environment 
on their own could also give rise to a correlation between 
recognition validity and n.

skewed distribution of the criterion variable. Many 
quantities in the world follow a skewed distribution (e.g., 
city sizes, wealth, book sales, name frequencies; Clauset, 
Shalizi, & Newman, 2009), so that there are few very large 
objects and very many rather small objects. If the target 
variable in inference is such a quantity, an asymmetric dis-
tribution of recognition’s predictive power might arise as 
follows. In a skewed distribution, the differences between 
objects in the tail of the distribution are very small, which 
decreases the chance that recognition correctly reflects the 
relative criterion value. Therefore, the more objects that are 
recognized, the lower the ability of recognition to predict 
the criterion, leading to a decreasing recognition validity. 
The result is a negative correlation between n and α.
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1. The average validities are calculated by first determining the validi-
ties for each individual participant (as defined above) and then averaging 
the individual parameters across participants.
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their raw data.

3. These studies thus fulfill the criteria for a proper test of the less-
is-more effect, as stipulated by Dougherty et al. (2008), involving a 
comparison of individuals “with different levels of knowledge all raised 
in the same ecology making inferences about objects within the same 
reference class” (p. 206).

4. That is, the simulation assumed implicitly that people apply the 
recognition heuristic in every case they can. Although this assumption 
is not supported empirically (people usually pick the recognized objects 
in only 80%–90% of the cases), for comparability with Goldstein and 
Gigerenzer’s (2002) analysis, I nevertheless retained this assumption. 
Further analyses showed that more realistic adherence levels led to quali-
tatively very similar results.

5. For the uncorrelated case, these predictions were based on putting 
the observed α and β into Equation 1. For the correlated case, the predic-
tions were generated using simulations similar to those reported above.

6. This possibility holds irrespective of the shape of the criterion 
distribution, which, as discussed above, can also produce a correlation 
between α and n.
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APPenDIx 
Recognition validity As a function of the number of Recognized objects

Each item from a set of objects has a recognition rank and a criterion rank. The recognition rank orders the 
objects according to the number of individuals recognizing them. The criterion rank orders the objects according 
to their criterion value. Using the connection between cue validity and the U value for the Mann–Whitney test 
(cf. Martignon & Hoffrage, 2002), we can express the recognition validity α, given n recognized objects, as
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where S(n) is the sum of criterion ranks Rcrit of the n recognized objects. What is the expected value of S(n)? As 
a first step, what is the expected criterion rank of the nth recognized object, given that n objects are recognized: 
Rcrit(n)? Put differently, what is the expected criterion rank of the object with a particular recognition rank?

Assume that objects are learned in the order of their recognition ranks, Rrec, so that n 5 Rrec (cf. Goldstein & 
Gigerenzer, 2002); that the expected rank depends only on the recognition rank—that is, Rcrit(n) 5 f (Rrec); and 
that the function relating Rcrit and Rrec is linear. Think of the criterion ranks and the recognition ranks as two 
variables that have the same variance (assuming there are no ties) and are correlated by rs (i.e., the recognition 
correlation; Goldstein & Gigerenzer, 2002). Generally, a variable Y is predicted linearly by another variable X as 
Y 5 B0 1 BYX 3 X, where the intercept B0 5 MY 1 MX 3 BYX and the slope BYX 5 rXY 3 sY/sX (see Cohen, 
Cohen, West, & Aiken, 2003, p. 33). Applied to the present case, Rcrit(n) 5 M(Rcrit) 1 M(Rrec) 3 BRcritRrec

 1 
B RcritRrec 3 Rrec. Because Rrec and Rcrit both range from 1 to N, both the average recognition rank, M(Rrec), and 
the average  criterion rank, M(Rcrit), equal (N 1 1)/2. Additionally, because Rrec and Rcrit both represent ranks, 
they have the same variance (sRcrit

/sRrec
 5 1) and, therefore, BRrecRcrit

 5 rs. Consequently, we obtain as our first 
result the expected criterion rank of the nth recognized object expressed as a linear function of the object’s 
recognition rank:
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As a second step, what is the sum of the expected criterion ranks across all n recognized objects? For that 
purpose, we need to multiply the intercept (the left-hand side of Equation A2) by n and replace Rrec with the sum 
of the recognition ranks of the n recognized objects, which is
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The sum of the expected criterion ranks across all n recognized objects is thus
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By putting Equation A3 into Equation A1, we obtain
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This can be simplified to
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