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Are There Limits to Binaural Additivity of Loudness?

Gerd Gigerenzer and Gerhard Strube
Ludwig-Maximilians-Universitit Miinchen, Germany

In recent years there has been notable interest in additive models of sensory
integration, Binaural additivity has emerged as a main hypothesis in the loudness-
scaling literature and has recently been asserted by authors using an axiomatic
approach to psychophysics. Restrictions of the range of stimuli used in the ma-
jority of former experiments, and inherent weaknesses of the axiomatic study by
Levelt, Riemersma, and Bunt (1972) are discussed as providing reasons for the
present investigation. A limited binaural additivity (LBA) model is proposed that
assumes contralateral binaural inhibition for interaural intensity differences that
exceed a critical level. Experimental data are reported for 12 subjects in a loud-
ness-matching task designed to test the axioms of cancellation and of commu-
tativity, both necessary to the existence of strict binaural additivity. In a 2 X 2
design, frequencies of 200 Hz and 2 kHz were used, and mean intensity levels
were 20 dB apart. Additivity was found violated in 33 out of 48 possible tests.
The LBA model is shown to predict the systematic nonadditivity in the loudness
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judgments and to conform to results from other studies.

Integrating sensory information from two
or more perceptual dimensions or channels
is a central feat accomplished by the human
information-processing system, and much
effort has been made to clarify the rules of
sensory integration. In recent years, there has
been notable interest in a broad variety of
research questions regarding additive models
of integration. Examples are provided in the
studies by Krantz and Tversky (1975) on vi-
sual perception, Wilkening (1979) on percep-
tual development, and Anderson (1981) on
information integration theory.

Two distinct methodological approaches
have been taken to generate and test additive
models of sensory integration. The tradi-
tional method is psychophysical scaling
(Stevens, 1975). Although the practical ne-
cessity and usefulness of that approach is
widely appraised, fundamental problems are
involved in scaling or “direct measurement.”
Representatives of the second approach, fun-
damental measurement theories (Krantz,
Luce, Suppes, & Tversky, 1971), have pointed
out that scaling procedures rest on the as-
sumption of some metric that is established
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per fiat (fitting equations to data), whereas
fundamental measurement theories explicitly
state the conditions necessary for the joint
existence of, for example, interval scales and
an additive integration rule. A similar ap-
proach has been taken by ‘“additive func-
tional measurement” (Anderson, 1981); this
may be regarded as a special case of that kind
of fundamental measurement theory known -
as additive conjoint measurement (Schone-
mann, Cafferty, & Rotton, 1973).

Binaural Additivity

The issue of binaural additivity of loudness
provides an outstanding example of an ad-
ditive integration hypothesis that was for-
mulated at least as early as Urbantschitsch’s
(1893) study. Both the scaling approach and
fundamental measurement theories have been
applied to that issue, the latter even in prob-
abilistic formulations ( Falmagne, 1976; Fal-
magne, Iverson, & Marcovici, 1979).

The basic phenomenon is well known: A
tone of given physical intensity appears louder
when presented to both ears than when pre-
sented to only one ear. The question is, Can
the perceived loudness of the binaural stim-
ulus be expressed through some algebraic
rule of combining relevant stimulus attri-
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butes (i.e., intensity or loudneéss) in the left
and right auditory channels?

In the past, summation of sound energy
was assumed to enhance binaurally perceived
loudness, and it seems that von Békésy (1929)
was the last to propose that explanation. Bin-
aural -summation of loudness rather than
physical intensity was invoked more suc-
cessfully (Fletcher & Munson, 1933). An
ongoing debate exists as to whether binaural
summation is perfect (Hellman & Zwislocki,
1963; Marks, 1978) or only partial (Reynolds
& Stevens, 1960; Scharf & Fishken, 1970).
Experimental data suggest that degree of
summation is independent of tone frequency
(even if frequency is different in both ears;
Scharf, 1969) but generally dependent on the
intensity and nature (e.g., wide-band noise
vs. pure tones) of the stimulus (Durlach &
Colburn, 1978).

Despite those variabilities and the varia-
tion observed in coefficients of loudness
power functions (Hellman & Zwislocki, 1963),

agreement is widespread as to the existence

of binaural additivity of loudness in general.
This means that loudness values established
independently of each other at both aural
channels are additively combined into a cen-
tral loudness sensation. The term binaural
additivity is used here in this sense.

With a scaling approach, additivity de-
pends on the metric of the loudness scale.
However, the validity of the output metric of
subjects’ judgments is not open to an empir-
ical test and consequently does not allow for
rigorous testing of binaural additivity (Levelt,
Riemersma, & Bunt, 1972).

Axiomatic Studies

The fundamental measurement theory
(Krantz et al., 1971) opened up a new and
promising approach because it enabled ex-
perimenters to test specific hypotheses of bin-
aural combination without the prerequisite
of loudness scale construction.

In general, a combination rule is specified
(e.g., an additive model). Again, it must be
noted that additivity is used in a very general
sense to mean that values are taken indepen-

" dently of each other, transformed, and finally
combined to form a total value; summation,
then, is a special case of additivity. In the next
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step, axioms (i.e., conditions necessary for
the model to hold) have to be defined and
then may be tested empirically. As a result,
the model being tested can be refuted or cor-
roborated, and the degree of corroboration
will depend on the severity of the test (Popper,
1963).

Levelt et al. (1972) were first to test the
double cancellation axiom (a condition nec-
essary for additivity) with data from paired-
comparison binaural loudness judgments.
They concluded that additivity exists. Fal-
magne (1976) tested the axioms of cancel-
lation and commutativity (both necessary
conditions for his probabilistic version of the
additive model) and found the laws of ad-
ditivity violated. But that study was based on
only a few hundred trials taken by a single
subject, and in a further experiment employ-
ing three subjects and some thousand trials
each, evidence was accumulated for a specific
additive model ( Falmagne et al., 1979). One
of the main results, however, is shown by
Falmagne et al. to be consistent with at least
one nonadditive model (see Equation 22 in
Falmagne et al.,, 1979). After weighing the
evidence, Falmagne et al. tentatively favor an
additive model, in view of Levelt et al.’s re-
sults.

Aims of the Present Article

Generally, “the work of Levelt and his col-
leagues is rightfully considered as a key result
in this area” (Falmagne, 1976, p. 67). The
design of the Levelt et al. study, however, will
be shown to have substantial shortcomings
that prevented a truly empirical test of bin-
aural additivity in their experiment.

A further reason to question binaural ad-
ditivity is the use of a limited range of inter-
aural intensity differences in the scaling lit-
erature (e.g., Hellman & Zwislocki, 1963;
Reynolds & Stevens, 1960) and in axiomatic
studies ( Falmagne et al., 1979). Even if bin-
aural additivity exists, it may be restricted to
equal or nearly equal differences in intensity
between the left and right channels. There-
fore we conducted an experiment that used
a sufficiently wide range of interaural inten-
sity differences; results are discussed with re-
spect to models for complete and for limited
binaural additivity.
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Critique of the Study by Levelt,
Riemersma, and Bunt

Levelt et al. (1972) formalized binaural
additivity in terms of additive conjoint mea-
surement. They tested two subjects in 18 cir-
cumstances involving a number of replica-
tions of a few basic conditions, and concluded
that “the 18 data matrices strongly show the
double cancellation property, which leads to
the conclusion that, for our subjects and con-
ditions, binaural additivity exists” (p. 60).

The theory of additive conjoint measure-
ment states three testable conditions for ad-
ditivity: transitivity, independence (single
cancellation), and double cancellation (Krantz
etal.,, 1971). Levelt et al., for economical rea-
sons, tested neither transitivity nor indepen-
dence but replaced the test of the latter by
a ‘““monotonicity assumption.” Therefore,
from the three generally testable conditions
for additivity, double cancellation alone was
subjected to empirical test.

Double cancellation is a property that nec-
essarily follows from binaural additivity. If
a, b, ¢ € A are the intensities of pure tones

Table 1
Double Cancellation in the Predetermined Rank-
Order Structure of Levelt et al.’s (1972) Data

Intensities Intensities (dB) at left ear
(dB) at

right ear 20 30 40 50 60 70
20 0 2 42 6 8 10
30 27O 14 18 22
40 f4 10 16 22 28 34
50 i6....14..22: 30 38 46
60 8 18 28 38 48 58
70 10 22 34 46 58 70

Note. Of 2,592 (= 36 X 36 X 2) paired comparisons
necessary for the 36 binaural pairs and two orders of
presentation, only 450 were obtained empirically by
Levelt, et al. (1972). The rest were constructed by defi-
nition and are reconstructed here according to the pro-
cedure of Levelt et al. (1972, p. 58).

# The value of 4 (e.g., for the pair [20, 40]) means that
(20, 40) dominates per monotonicity assumption two
binaural pairs (viz, [20,20] and [20, 30]), and because
of two different orders of presentations, this number is
multiplied by two.

b 3 X 3 submatrices, like the one shown enclosed in dot-
ted lines, test double cancellation, which means that
if (30, 30) = (40, 20), and (40, 40) = (50, 30) then (30,
40) = (50, 20) must hold.
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presented to the left ear, and p, ¢, r € P are
the intensities of pure tones presented to the
right ear, then ap € 4 X P denotes a binaural
pair. Let f and g be loudness functions for
the left and right ears, respectively. The sym-
bol = stands for *“is judged louder than or
equal to.” Under conditions of binaural ad-
ditivity, a comparative judgment about tone
pairs can be expressed as -

ap R bqiff f(a) + g(p) = f(b) + &(9), (1)
or, equivalently,
ap 2 bq iff f(a) — g(q) = f(b) — g(p). (la)
Double cancellation is expressed by

ifapz bgand br 2 cpthen ar 2 cq. (2)

By expressing the binaural loudness judg-
ments in Equation 2 in terms of differences
of loudnesses, as given in Equation 1(a), we
get the following:

if
fla) — g(g) = f(b) — g(p)
and
f(b) — g(p) = f(c) — g(n),
" then

f(a) — g(g) = f(c) — g(). (2a)

This equation clarifies the meaning of dou-
ble cancellation as a special case of the well-
known transitivity inherent in additive struc-
tures. Double cancellation means that if
binaural additivity exists, binaural loudness
differences have to be transitive.

To test double cancellation, Levelt et al.
constructed a rank order of the stimulus pairs
with respect to their binaural loudness,
counting how often a given pair dominates
(i.e., is judged louder than) another one. Be-
cause the 2,592 paired comparisons required
to construct that rank order are not feasible
for economical reasons, only 450 compari-
sons were realized in the experiment; the
other comparisons were estimated using the
aforesaid monotonicity assumption. There-
fore, no less than 82.64% of Levelt et al’s
data were defined a priori.

Although monotonicity does not generally
imply the double-cancellation property (Lev-
elt et al., 1972, construct a counterexample
for demonstration), the Levelt et al. a priori
data structure does imply double cancella-
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tion, which can be computed from the values
and method given in Table 1.

Levelt et al.’s a priori structure contains
more than 80% of the total information on
which their subsequent test of double can-
cellation rests. The comparatively small
amount of empirical data (17.36%) added to
those values can scarcely be expected to dis-
tort their predetermined structure severely.
A comparison of Levelt et al.’s a priori struc-
ture with their results helps to make that
point clear.

Table 1 shows the number of domination
instances (ranks) for all pairs that can be
computed from the a priori values alone. In
the 400 instances (i.e., the 400 3.X 3 sub-
matrices embedded in their 6 X 6 matrix),
double cancellation is never violated; it holds
in 252 instances and is not open to test in
148 instances. The a priori structure yields
a nearly perfect prediction of Levelt et al’s
data, which reported an average of 3.9 vio-
lations, 244.7 positive instances, and 151.4
no-test situations. Ostensibly, the small
amount of true empirical data did not no-
ticeably change the a priori structure. Note
that even the proportion of no-test instances
is nearly identical. We therefore conclude
that the empirical status of the double-can-
cellation test as performed by Levelt and his
co-workers is severely shaken. If the com-
parisons not determined a priori are com-
puted as random, with a probability of .5 for
any given pair ap dominating another pair,
a matrix again results that is completely ad-
ditive. ~

A second line of argument is independent
of the artificial nature of Levelt et al.’s (1972)
data. Even if the axioms of transitivity, in-
dependence, and double cancellation had
been shown to stand up to empirical testing,
we ought to be careful in evaluating the status
of these necessary, but not sufficient, condi-
tions as “practically sufficient,” because it
depends on the size of the design. Generally,

“the larger the design, the smaller the proba-
bility that additivity exists when the validity
of the three necessary conditions has been
established (Arbuckle & Larimer, 1976;
McClelland, 1977). Although Arbuckle &
Larimer’s Monte Carlo studies do not report
values for a 6 X 6 design (as was used by
Levelt et al.), we may take their value for a
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7 X 5 design as a minimum: No less than
68% of all cases in which independence and
double cancellation are valid can still be
shown to be nonadditive, a proportion that
would be even higher for a 6 X 6 matrix of
stimuli. For these reasons; the study by Levelt
et al. does not provide strong support for bin-
aural additivity of loudness.

A Model of Limited Binaural Additivity

“Because strict binaural additivity has been
brought into question, what alternatives may
be thought of? Physiology suggests numerous
ways of interaction between left and right ears
(e.g., a detector mechanism for interaural
time and intensity differences, which deter-
mine the degree of lateralization; Strube;
1982). More specifically, data from binaural/
binaural loudness-matching experiments
suggest an inhibitory effect of the louder tone
on the contralateral, softer one; if the inter-
aural intensity difference exceeds 6-12 dB
(less for pure tones, more for noise; Irwin,
1965; Keen, 1972). Binaural loudness com-
bination only appears linear with rather small
interaural intensity differences (characteris-
tically, when lateralization is not complete).
Outside that range, binaural loudness gain
becomes spurious, possibly because of con-
tralateral binaural inhibition.

Because physiological details are not well
known to date, and because the construction
of approximating functions, apart from the
general deficiencies already noted, is open to
considerable variation (Treisman & Irwin,
1967), no effort is made to construct a best-
approximation function. Instead, we prefer
to confine ourselves to the delimiting of a
tolerance field, which may be defined by as-
suming strict additivity (with a gain of 6-10
dB over mean intensity), until (at an intensity
difference of twice the maximum gain) the
louder tone alone is assumed to determine
binaural loudness. Figure 1 shows the toler-
ance field for this /limited binaural additivity
(LBA) model.

Let a, b € A4 be the intensities of pure tones
presented to the left ear, and p, g € P be the
intensities of pure tones presented to the right
ear. The model then states that

ap = bq iff max[M(a, p) + 8, max(a, p)]
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Figure 1, Equiloudness contours for the limited binaural
additivity model stated in Equation 3. (The cross-
hatched area is the tolerance field for deltas between 6
and 10 dB.) ) .

with M designating the arithmetic mean and
4 designating the gain. The symbol 2 stands
for “is judged louder than or equal to.”

Clearly this model is simplified because it
assumes binaural symmetry and an abrupt,
instead of gradual, increase in interaural in-
hibition. The LBA model, however, is easily
demonstrated, specifies limits for binaural
additivity, and is capable of computing pre-
dictions of experimental outcomes.

In addition, a quick comparison with Ir-
win’s (1965) data shows a surprisingly good
approximation for so simple a model, with
correlations of .9 and higher. (Incidentally,
Treisman & Irwin, 1967, reported correla-
tions of .97 with various power functions,
independent of the exact combination rule.
This fact amply demonstrates that function
approximation alone, apart from detecting
gross errors, is not useful for testing models
because significant deviations are rarely
found.)

Testing Binaural Additivity

Our axiomatic formulation and method of
testing binaural additivity is similar to Fal-
magne’s (1976) random conjoint measure-
ment model. Let a, b € A be the intensities
of pure tones presented to the left ear, and
D, ¢ € P be the intensities for the right ear.
The experimental paradigm of binaural
matching requires the subject to adjust the
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intensity b so that two alternatingly presented
tone pairs (a, p) and (b, ¢g) appear equally
loud (intensities a, p, and ¢ are fixed by the
experimenter).

For the matching paradigm, the hypothesis
of binaural additivity may be stated algebra-
ically as follows:

ap ~ bqiff f(a) + g(p) = f(b) + gl@). 4)

The functions f and g may ‘be regarded as
monaural loudness functions for the left and
right ear, respectively, accounting for possibly
different loudness functions for each ear. Fal-
magne (1976) gives a probabilistic version of
Equation 4, replacing b with a random vari-
able U,(a) and adding an error term E,(a).
This change makes the right side of Equation
4 ,

flULa)] = g(p) — 8(@) + (@) + Epfa). (5)

Accordingly, the well-known necessary -
conditions in the aigebraic framework of ad-
ditive conjoint measurement are reformu-
lated. The first of the two testable conditions
(foralla€ Aand p, q, r, s € P) is cancellation.

6

in which m,,(a) is the median of the distri-
bution of values b that results from the sub-
ject first hearing a tone pair (g, p), then a tone
r at the right ear together with a tone b at the
left ear, and adjusting b so that the loudness
of (b, r) appears equal to the loudness
of (a, p).

This cancellation rule is the probabilistic
counterpart of the double cancellation con-
dition ( Falmagne, 1976, p. 70), which relates
to the transitivity of binaural loudness dif-
ferences.

The second of the testable conditions nec-
essary for binaural additivity is commutativ-

ity

mpr(a) = mpq[mqr(a)]a

Mpglm(a)] = m.{m,{a)] )

Commutativity refers to the property of
addition that, when adding two numbers x
and y, x + y = y + x (i.e., the result of ad-
dition is order independent). Thus, if bin-
aural additivity holds, it should make no dif-
ference if the resulting median is constructed
by balancing against p and ¢ first and then
against r and s, or against r and s first and
then against p and gq.

\
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‘'The meaning of these conditions will also
be clarified when we consider the testing pro-
cedure.

Testing Cancellation

Step 1. The subject adjusts an intensity
b so that (a, g) sounds equally loud as (b, r)
for fixed intensities a, ¢, and r. Repeating this
procedure k; times yields the median b’ =
tig(a), which is an estimator for the median
Mg (a).

Step 2. The equivalent procedure, with
fixed intensities ', p, and ¢, and adjusting ¢

so that (', p) appears equal to (¢, g), repeated .

k, times, yields the median ¢’ = 1, {m,(a)].

Step 3. Similarly, the adjustment of d
(with fixed intensities a, p, and r) so that (a,
D) equals (d, r), repeated k; times, gives the
median d' = m,(a).

If binaural add1t1v1ty holds, no dlﬁ‘erence
must exist between the distributions of ¢ and
d with medians ¢’ and d'.

Testing Commutativity

Step 1. The subject adjusts an intensity
b so that (a, r) sounds equally loud as (b, s)
for fixed intensities 4, r, and s. Repeating this
procedure k; times gives a distribution with
median b’ = 1, (a).

Step 2. An intensity d is adjusted by the
subject so that (&', p) equals (d, g). Repeating
this k, times yields the median 4’ =
iplm,(a)].

Step 3. Similarly, ¢ is adjusted so that (a,
D) equals (¢, g). Repeating this procedure k;
times gives the median ¢’ = r,(a).

Step 4. An intensity e is adjusted so that
(c, r) equals (e, s). Repeatlng the procedure
k, times yields the median &' = 7y, [m,(a)].

If binaural additivity holds, no difference
must exist between the distributions of d’and
e with medians d' and ¢'.

Predictions of the Limited Binaural
Additivity Model

If we apply the LBA model of Equation
3 to the matching paradigm, we get

ap ~ bq iff max{M(a, p) + 8, max(a, p)}
= max[M(b, q) + o, max(b, ¢)]. (8)

The model not only allows for the predic-
tion of equality or direction of deviation of
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Table 2
Predictions of Experimental Results from Strict
and Limited Binaural Additivity Models ’

Comparison of

medians Range of medians
Strict Limited  Strict Limited
8=6dB 4&=10dB
Cancellation ‘
c=d c¢>d No c=7125 ¢=17725
prediction d=69.00 d=73.00
A=4225 A= +425
Commutativity
d=e¢ d>e No d=6975 d=71575
prediction e =69.00 e= 72.00
A=+75 A=4375

the medians in question but also provides an
estimation of the absolute values of the me-
dians.

Choosing the fixed intensities is a crucial
point for the predictions of this model in re-
lation to a model that is completely additive.
Ostensibly, the LBA model reduces to an ad-
ditive model for all cases in which the inten-
sity difference of a binaurally presented tone
pair does not exceed 26. In order to get dif-
ferent predictions from the completely ad-
ditive and LBA models, we chose @ = 57, p =
69, g = 54, and r = 42 for the test of cancel-
lation, and a = 57, p = 69, g = 54, r = 48,
and s = 42 for the test of commutativity (all
values are in dB SPL for the loud condition;
all values are 20 dB less in the soft condition).

For deltas of 6 dB and 10 dB, we get the
prediction that

Mpg My (a)] > my,(a) 9
. (cancellation violated), as well as
MuIm(a)) > mmyfa)]  (10)

(commutativity violated).
Table 2 shows the predicted values for ¢
and d (test of cancellation) and for 4 and e

" (test of commutativity).

Method

Subjects

Twelve subjects (4 female, 8 male [10 psychology stu-
dents and the authors]) received eight sessions within 2

/
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weeks (four conditions X two axioms). The order of ex-
perimental conditions was randomly determined for
each subject. All subjects had shown normal hearing
ability in pretest sessions and had received training ses-
sions for the matching task.

Apparatus and Procedure
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computed in Step 2; for testing commutativity, medians
had to be computed in Steps 2 and 4 of the experiment),
and interacted with the subjects by means of a small
control panel. The control panel contained two light-
emitting diodes (LEDs) for signaling. trials and pauses
and four buttons: (a) start trial/present reference pair,
(b) louder, (c) softer, (d) OK, match—trial over. The sub-

" jects were seated in a sound-attenuated room (30 dB to

Experimental apparatus and procedure were modeled
after those in Falmagne’s (1976) study. The main devia-
tions were as follows: (a) Four experimental conditions
were used instead of one, and (b) automatic control of
the experiment served to shorten experimental sessions
(no loss of time between trials) and to rule out errors by
the experimenter.

Signals. 200-Hz and 2000-Hz sine-wave tones were
gated at 2 Hz with a duty cycle of 50%. The reference
levels for intensity were 70 dB and 90 dB SPL, respec-
tively. Intensity of the fixed stimuli ranged from —21 dB
to —48 dB with respect to the above reference levels.
Intensities used for testing the cancellation axiom were
a=-33dB,p=-21dB, g=-36dB, and r = —48 dB.
For testing commutativity, 4, p, and ¢ were used as be-
fore, but in this condition, r = ~42 dB and 5=
—48 dB.

Apparatus. The stimuli ‘were generated by a New-
tronics-function generator and gated through an analog
switch (using TI 604), then divided into a left and right
channel. Precision attenuators (using AD 7110, 0 to
—88.5 dB in 1.5 dB steps), standard amplifiers (Ken-
wood), and headphones (Sennheiser) completed the sig-
nal path. Oscilloscope (Gould) and sound-level meter
(with artifical ear, Briiel & Kjaer) were used for moni-
toring. A microcomputer system (Synertek SYM-1, us-
ing 6502 CPU) controlled attenuators, logged data, com-
puted medians (for testing cancellation, medians were

32 dB[A] residual noise; further attenuated, of course,
by the headphones). Details of the instrumentation and
the computer program have been published elsewhere
(see Strube, 1981, pp. 172-187).

Procedure. Each trial consisted of: the following: (a)
the subject pressing the start button, whereupon the ref-
erence pair was presented for 4 sec, after which the stim-
ulus pair to be matched was presented. (b) The subject
could now adjust the loudness of the variable stimulus
of the pair by pressing louder or softer buttons, and at
any time switch to hearing the reference pair. (¢) When
the subjects determined that a match had been achieved,
they terminated the trial by pressing the OK button.

Choosing optimal values for the number of trials in
each step of the experiment requires a number large
enough for the empirically obtained medians to be good
estimations of the population medians, and small enough
to keep the subject from becoming a victim of fatigue.
Measurements from extended training sessions with our
subjects indicated that values of k, = 41, ky = k3 = 20
(cancellation) and k, = k3 = 41, k; = k4 = 20 (commu-
tativity) fulfilled these requirements. Thus, for each of
the four experimental conditions in our 2 X 2 design
(frequencies of 200 and 2000 Hz, combined with inten-
sity reference levels of 90 and 70 dB SPL), an experi-
mental session consisted of 81 or 122 trials, respectively,
plus three initial trials that were not evaluated, to create
a total of 836 trials for each subject.

Table 3
Results of Testing the Axioms of Cancellation and of Commutativity
200 Hz 2000 Hz
Intensity low Intensity high Intensity low Intensity high
Subject Can, Com. Can. Com. Can. Com. Can. Com.
1 3.780* 3.057* 2.231* —.592 4,781* 2.341* 5.044* 3.956*
2 1.743 4,030 1.309 5.371* 554 5.274* 622 5.456*
3 1.971* 2.091* 2.271* 4.632* —.601 —-.247 .980 2.392*
4 1.484 —1.299 295 4,962* —2.557* .593 -1.799 4,279*
5 419 —-.028 2.760* 5.105* —.198 2.528* 1.788 -1.108
6 -3.226* 3.890* 1.212 —.663 —1.195 -.196 -3.761* 3.441*
7 —1.580 —-.292 .096 -.371 —.042 1.174 —-1.073 —-.906
8 4.750* 4.981* -.393 —~5.389* 1.936 —2.549* 875 —3.877*
9 -.123 .090 2.129* 1.961* 4.022* -.703 1.314 4.933*
10 -2,021* 4,962* 3.284* 1.765 667 2.814* —.744 4.032%
- 11 2.687* —.478 -.236 -1.057 554 ~.240 723 3.048*
12 4415% —2.505* 155 -1.019 1.623 =715 2.588* 2.692*
M {z| 2.350 2.309 1.364 2.740 1.561 1.615 1.776 3.343

Note. Can. = cancellation; Com, = commutativity. A significant z value means that there is a significant violation
of additivity (i.e., a significant difference between medians ¢’ and 4’ [cancellation], or 4' and ¢’ [commutativity],
respectively). A positive value of z indicates that ¢’ > d' (d' > ¢'), a negative value, that ¢’ < d' (d' < ¢'). -

*p < .05,
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Results
Testing Strict Additivity

Binaural additivity prohibits the medians
¢' and d' (cancellation), as well as 4’ and ¢’
(commutativity) to differ significantly from
each other. A z statistic was computed ac-
cording to the method of Raatz (cited in Lie-
nert, 1973, p. 233). Table 3 shows the results
for our 12 subjects under the four conditions.
In 33 of these 48 cases, at least one of the
necessary conditions is violated. Therefore,
the hypothesis of unrestricted binaural ad-
ditivity has to be rejected.

Fit of the Limited Binaural
Additivity Model

Predicted mean values. A comparison of
the mean valueés of ¢ and d (or 4 and e, re-
spectively; see Table 4) with the limits of the
tolerance field generated by the LBA model
(see Table 2) shows that the LBA model fits
our data reasonably well; only three values
lie slightly outside the predicted range (by
.2, .2, and .7 dB, respectively).

Predicted differences. The predicted de-
viations (¢’ > d'; d’ > €') show up under all
experimental conditions. The magnitude of
the differences d’' — ¢’ lie in the expected
range, whereas the differences ¢’ — ' turn out
to be smaller than predicted. More impor-
tant, however, is that the direction of the dif-
ferences is significantly in favor of the pre-
dicted direction: ¢’ is greater than ¢’ in 33 of
the 48 cases, x*%(1)=6.75, p< .01, d is
greater than ¢’ in 28 of 48 cases (ns). Taking
‘the significant z values of Table 3 renders a
similar result: Of the 46 significant differ-
ences found, 38 are in the expected direction.

Effect of Experimental Conditions

Effect on deviations from binaural additiv-
ity. The bottom line of Table 3 shows mean
absolute z values (absolute because additivity
is violated by deviations in any direction).
Analysis of variance (ANOVA) for the absolute
z values gives a significant result only for in-
tensity level on the z values obtained when
testing commutativity, F(1, 33) = 647, p <
.025. Binaural additivity is violated more
under higher intensity) than under lower in-
tensity. For both axioms, interactions of sim-
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Table 4
Effects of Frequency and Mean Intensity Level
Intensity
level (dB) 200 Hz 2000 Hz Total
Cancellation
70
c 52.8 527 52.7
d 52,0 52.2 52.1
A +.8 +.5 +.6
90
c 54.2 52.1 53.1
d 53.2 51.7 52.5
A +1.0 +.4 +.6
Total
c 53.5 52.4 52.9
d 52.6 51.9 52.3
A +.9 +.5 +.6
Commutativity
70
d 50.5 50.6 50.5
e 48.8 499 49.4
A +1.7 +.7 +1.1
90
d 52.4 50.3 51.3
e 51.5 48.3 49.9
, A +.9 +2.0 +1.4
Total
d 51.4 50.4 50.9
e 50.2 49.1 49.6
A +1.2 +1.3 +1.3

Note. Reference levels are 70 and 90 dB SPL; values for
90 dB have been corrected by —20 dB to ensure com-
parability with 70 dB condition. Values are means for
¢,dand d, e

ilar form are discernible (but not significant
because of the considerable amount of inter-
individual variance components).

Effect of mean values. Table 4 shows the
mean values for the ¢'s and d's, and for the
d's and e's under each condition. An ANOVA
(randomized block design) yields significant
results for all interactions with the exception
of ¢'s. This result is due mainly to the con-
dition 200 Hz/90 dB. As for the differences
¢ —d' and d’ — €', an ANOVA does not show
any significant main or interaction effects,
even for interaction on d' —e" F(1, 33) =
3.07 (all @ = 5%).

Individual Differences

The same ANOVA can be used to test the
effect of the ““blocks” (i.e., our listeners). For
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all the medians except the d' of commutativ-

ity, and for the differences ¢' — d' and d' —

¢', significant F values were obtained (a =
5%). This result is in accordance with the
considerable interindividual variation in the
z values repprted previously.

Discussion
Binaural Additivity Rejected

In the majority of cases (68.75%), at least
one of the two conditions necessary for ad-
ditivity is violated. Only one subject in 12
fulfills the requirements of additivity under
all four experimental conditions. This fact
clearly refutes the additivity hypothesis as a
general rule of binaural integration, More-
over, if a specific case shows both the property
of cancellation and of commutativity, the
existence of additivity is not guaranteed be-
cause cancellation as well as commutativity
are neccessary but not sufficient conditions
for additivity (cf. the critique of Levelt et al.’s,
1972, study).

Our data contain considerable individual
variation, not only in absolute values chosen
in the matching task but presumably also in
the rules of binaural loudness combination
that may be inferred from the z values of
Table 3. This finding parallels those of Krantz
and Tversky (1975) and other investigators
who collected evidence for individually dif-
fering combination rules in visual judgments
(cf. Gigerenzer, 1981, for a general discus-
sion).

A possible objection to our findings might
be that the listeners in our experiment, de-
spite their training, tended to make system-
atic errors in the matching task. The first
possible type of matching bias would have
occurred if the tone to be adjusted by the
listener had always initially been .too low or
too high in intensity. The settings would then
have been systematically too high or too low,
respectively; but, because the initial intensity
of the stimulus to be adjusted was random-
ized, this kind of systematic error can easily
be ruled out.

A further source of errors might exist. Our
listeners might have shown constant individ-
ual matching biases, together with random
error variance. Although the random portion
of such errors is somewhat accounted for by
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taking medians from many trials, no such
provision could be made for systematic biases.
Considering that of the four medians relevant
for testing additivity, three are.based on trials
in which one of the fixed stimuli actually was
a median obtained in an earlier step of the
experiment, errors could have been com-
pounded from one experimental step to the
next. This would enlarge overall variance be-
tween subjects in all steps of our experiment
that rest on a previously determined median.
Data from the test of cancellation provide an
excellent means for checking this possibility.
Overall variance from Step 2 of the test of
cancellation (in which a previously estab-
lished median, #’, is involved) was compared
with the variance of d' from Step 3 (in which
judgments are not based on a median but rest
on stimuli that were fixed for all listeners).
If systematic errors had been compounded,
the former variance should have been mark-
edly higher than the latter. This, however,
holds true under only two of the four exper-
imental conditions, F(240, 240) = 1.426 and
1.621, p < .01, in both cases, whereas in both
of the 200-Hz conditions, F(240, 240) =
1.186 and 1.079, which are far from reaching
significance. The possibility of compounding
errors can thus be ruled out in the 200-Hz
conditions. Nevertheless, more cases against
the axiom of cancellation were found for the
200-Hz than for the 2-kHz conditions (12
against 6 significant values of z in Table 3).
We concluded that the failure of strict bin--
aural additivity certainly cannot be due to
the design of our experiment.

Status of the LBA Model

First, it should be noted that in terms of
severity (Popper, 1963), our test of the LBA
model is stronger than the test that the ad-
ditive model had to stand (and failed). Apart
from postulating a general property of bin-
aural loudness construction, the LBA model
has been formulated in decibel units and is
therefore much more readily refuted by em-
pirical test. If the LBA model had been spec-
ified in subjective units, it would be more
difficult to reject.

Second, the LBA model stands for a class
of possible nonadditive models and is sim-
plified in certain respects. It postulates partial
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contralateral binaural inhibition 4s a central
feature of binaural loudness construction.
But it does not account for sensitivity differ-
ences between the left and right ears, and has
made no provision for separate stages of loud-
ness construction (as have been postulated,
for instance, by Treisman & Irwin, 1967). In
a more general formulation, allowing for dif-
ferent subjective scales f and g, and a thresh-
old é for dominance, binaural loudness L{a,
D) of a tone pair {(a, p) could be given as the
following:

flay if f(a)—g(p)=2,
g(p) if g(p)-fa)=2,
(f(a) + g(p))/2 + 8, otherwise.

(11

Third, the LBA model proves surprisingly
successful even in its simplified form. Not
only is it able to fit the data of Irwin (1965)
and Keen (1972).reasonably well but it gives
fairly good predictions for our experimental
outcomes. Also, it is compatible with the re-
sults reported by Falmagne et al. (1979, Ex-
periment 1), These authors assumed additiv-
ity as the basic characteristic and tested three
specific versions of additive models: the log-
arithmic, linear, and exponential difference
probabilistic additive conjoint measurement
(PACOME) model. These three models make
different predictions for the probability P(ap,
bp) that a tone pair (g, p) will be judged louder
than a pair (b, p). The logarithmic PACOME
predicts that for fixed a and b, and increasing
D, the value of P(ap, bp) will decrease toward
.5, whereas the linear PACOME postulates that
P(ap, bp) will not- change. The exponential
PACOME even predicts an increasing value of
P(ap, bp) under these circumstances. Fal-
magne et al’s results show that P(ap, bp)
decreases toward a chance value of .5 with
increasing p. Falmagne et al. (1979) are care-
ful to take these data as confirmstion for the
logarithmic difference PACOME model only
*“if the general framework of the . . . model
is retained” (p. 32).

Other models, additive or not, might of
course be used to explain such data. Table
S shows the behavior of the LBA model for
Falmagne et al.’s experiment, which is a step-
wise decrease of binaural difference towards

L(a,p) =
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Table 5 : .
Predictions of the Limited Binaural Additivity
Model for Falmagne et al.’s (1979) Conjoint
Weber's Law

Binaural pair .

(dB) Predicted
difference
a P b p (dB)
49 34 47 34 +2
49 38 47 38 +1
49 42 47 42 +1
49 46 47 46 +1
49 50 47 50 +1
49 54 47 54 +1
49 58 47 58 +1
49 62 47 62 0
49 66 47 66 0
49 70 47 70 0

Note. The predictions refer to the experimental design
of Falmagne et al. (1979, Experiment 1). Values for q,
b, and p are taken from Falmagne et al.; the predictions
of the LBA model are based on é = 6 dB. The difference '
between (a, p) and (b, p) decreases to zero when p in-
creases. This corresponds to a decrease of P(ap, bp) to-
ward .5.

zero (equivalent, of course, to a decrease of
Plap, bp] towards .5) with increasing p.

Matching and Forced-Choice Paradigms

The intensity-matching paradigm used by
Falmagne (1976) and in the present study'is
not the only way to test for additivity of bin-
aural loudness combination. Levelt et al.
(1972) and Falmagne et al. (1979) used
paired comparisons in a forced-choice par-
adigm. Can these two experimental tasks be
considered as equivalent? Falmagne (1979)
has resolved this issue by showing that under
conditions normally fulfilled, “the compari-
son paradigm can be used to mimic the
matching paradigm through a Stochastic Ap-
proximation technique” (p. 79). Therefore,
the refutation of the model of strict binaural
additivity of loudness (Equation 5) implies
rejection of strict additivity in general and is
not confined to a matching task.

Conversely, predictions may be derived
from the PACOME models of Falmagne et al.
(1979) that permit direct comparison with
data from matching-type experiments. In
contrast to the equiloudness contours derived
from the LBA model (Figure 1), all strictly
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additive models result in strictly monotone
equiloudness functions.

Although' attempts have been made to
“linearize” equiloudness functions through
numerous transformations (Treisman & Ir-
win, 1967), a fundamental difference remains
between models that suggest limits to bin-
aural additivity and those that do not. The
present results indicate, in our opinion, that
limits to binaural additivity of loudness exist
and should be recognized as such. The quest
for a more refined model of limited binaural
additivity possibly constitutes a fruitful path
for further study of sensory integration of
binaural loudness.
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