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Decision Making: Nonrational Theories

Gerd Gigerenzer

The term “nonrational” denotes a heterogeneous class of theories of decision making designed to 
overcome problems with traditional “rational” theories. Nonrational theories have been denoted 
by various terms, including models of bounded rationality, procedural rationality, and satisfi cing. 
Although there is as yet no agreed-upon defi nition of “nonrational,” rational and nonrational 
theories typically differ on several dimensions, discussed below. The term “decision making” is 
used broadly here to include preference, inference, classifi cation, and judgment, whether con-
scious or unconscious.

Nonrational theories of decision making should not be confused with theories of irrational 
decision making. The label “nonrational” signifi es a type of theory, not a type of outcome. In 
other words, the fact that nonrational theories postulate agents with emotions, limited knowl-
edge, and little time—rather than postulating omniscient “rational” beings—need not imply that 
such agents fare badly in the real world.

1.  Historical Background

A few historical remarks on rational theories help to set the stage for nonrational theories. In 
the mid-seventeenth century, the calculus of probability replaced the ideals of certain knowledge 
and demonstrative proof (as in mathematics and religion) with a more modest vision of reason-
ableness. What may be called the fi rst rational theory of decision making, the maximization of 
expected value, emerged at this time. According to the theory, an option’s expected value is the 
sum of the product of the probability and the value of each of its consequences; a rational deci-
sion maker chooses the option with the highest expected value.

The notion of defi ning an option’s reasonableness in terms of its expected value soon ran into 
problems, because in some situations (e.g., the St. Petersburg problem), its prescriptions con-
fl icted with educated intuition. Mathematician Daniel Bernoulli therefore proposed to replace 
the concept of expected value with that of expected utility. For instance, the utility of a monetary 
gain (say, of $1,000) can be defi ned as a logarithmic function of its dollar value and the agent’s 
current wealth, assuming that the utility of an additional dollar diminishes as the value of the 
gain and current wealth increase.

The fact that rational decision making can be defi ned in more than one way—for example, 
as maximization of expected value or expected utility—has been interpreted both as the weak-
ness and the strength of the program. This ambiguity was one of the reasons why, by 1840, most 
mathematicians had given up attempting to defi ne a calculus of reasonableness (Daston, 1988). 
With a few exceptions, rational theories of decision making largely disappeared until their revival 
in the 1950s and 1960s. Only then did the major species of rational theories, the maximization 
of subjective expected utility and Bayesianism, become infl uential in the social and behavioral 
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sciences. At about the same time, some psychologists and economists—most notably Nobel 
 laureates Herbert Simon and Reinhard Selten—criticized the assumptions about the human 
decision maker in modern rational theories as empirically unfounded and psychologically un-
realistic, and called for alternative theories.

2.  Optimizing vs. Nonoptimizing Theories

Rational theories rest on the ideal of optimization; nonrational theories do not. Optimization 
means the calculation of the maximum (or minimum) of some variable across a number of alter-
natives or values. For instance, according to a rational theory known as subjective expected utility 
(SEU) theory, an agent should choose between alternatives (e.g., houses, spouses) by determin-
ing all possible consequences of selecting each alternative, estimating the subjective probability 
and the utility of each consequence, multiplying the probability by the utility, and summing 
the resulting terms to obtain that alternative’s subjective expected utility. Once this computa-
tion has been performed for each alternative, the agent chooses the alternative with the highest 
expected utility. This “subjective” interpretation of SEU has been used to instruct people in 
making  ra tional choices, but was criticized by decision theorists who argue that preferences are 
not derived from utilities, but utilities from preferences. In this “behavioristic” interpretation, 
no claims are made about the existence of utilities in human minds; SEU is only an attempt to 
describe the choice. People choose as if they are maximizing SEU (see section 3).

Nonrational theories dispense with the ideal of optimization. For instance, Simon (e.g., 1956, 
1982) proposed a nonrational theory known as satisfi cing, in which an agent is characterized by 
an aspiration level and chooses the fi rst alternative that meets or exceeds this aspiration level. The 
aspiration level (e.g., characterization of what would constitute a “good-enough” house) allows 
the agent to make a decision without evaluating all the alternatives.

There are several motives for abandoning the ideal of optimization. First, in many real-world 
situations, no optimizing strategy is known. Even in a game such as chess, which has only a 
few stable, well-defi ned rules, no optimal strategy exists that can be computed by a  human or a 
 machine. Second, even when an optimizing strategy exists, it may demand unrealistic amounts of 
knowledge about alternatives and consequences, particularly when the problem is novel and time 
is scarce. Acquiring the requisite knowledge can confl ict with goals such as making a decision 
quickly; in situations of immediate danger, attempting to optimize can even be deadly. In social 
and political situations, making a decision can be more important than searching for the best 
option. Third, strategies that do not involve optimization can sometimes outperform strategies 
that attempt to optimize. In other words, the concept of an optimizing strategy needs to be dis-
tinguished from the concept of an optimal outcome. In the real world, there is no guarantee that 
optimization will result in the optimal outcome. One reason is that optimization models are built 
on simplifying assumptions that may or may not actually hold. An example of a nonoptimizing 
strategy that performs well in the repeated prisoner’s dilemma is “tit for tat,” a simple heuristic 
that cooperates on the fi rst move and thereafter relies on imitation, cooperating if the partner 
cooperated and defecting if the partner defected on the previous move. In the fi nitely repeated 
prisoner’s dilemma, two tit-for-tat players can make more money than two rational players (who 
reason by “backward induction” and therefore always defect), although tit for tat only requires 
remembering the partner’s last move and does not involve optimization.
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3.  Normative vs. Descriptive Theories

Nonrational theories are descriptive, whereas rational theories are normative—this common dis-
tinction is half-true. Indeed, nonrational theories are concerned with psychological plausibility, 
that is, the capacities and limitations of actual humans, whereas rational theories have little 
concern for descriptive validity and tend to assume omniscience. But nonrational theories have 
sometimes been interpreted as normative as well. For instance, if an optimization strategy is 
nonexistent, unknown, or dangerous to perform because it would slow decision making, a simple 
heuristic—such as copying the behavior of others—can be the best decision-making strategy.

Rational theories typically do not assume that agents actually perform optimization or have 
the knowledge needed to do so. Their purpose is not to describe the reasoning process, but to 
answer a normative question: what would be the best strategy for an omniscient being to adopt? 
In economics, psychology, and animal behavior, however, the answer to this question is sometimes 
used to predict actual behavior. In this way, a rational theory can be descriptive of behavioral 
outcomes yet mute about underlying processes. For instance, optimal foraging theory assumes 
that animals select and shift between food patches as if they had perfect knowledge about the dis-
tribution of food, competitors, and other relevant information, without claiming that real animals 
have this knowledge or perform optimizing computations. Instead, it is assumed that animal be-
havior has evolved to be close to optimal in specifi c environments. The question of what proximal 
mechanisms produce this behavior is a different one. These mechanisms may be heuristics, habits, 
or forms of social imitation that are the topic of theories of nonrational decision making.

To summarize, nonrational theories aim to describe both the process and the outcome of 
decision making. In certain situations, they can be seen as characterizing the best an organism 
with limited time and knowledge can do. Rational theories are primarily normative, although 
often for omniscient rather than real beings. They are often seen as descriptive in the sense of 
predicting behavior, but not as models of underlying processes.

4.  Search vs. Omniscience

Search is a central part of nonrational theories. In many rational theories, in contrast, search 
plays no role; it is instead assumed that all relevant information is already available to the agent 
(hence the agent’s omniscience). Actual humans, however, have to search for information, either 
in memory or in outside sources, such as on the Internet or in encyclopedias. Information search 
can cost time and money.

One class of rational theories, known as “optimization under constraints,” models limited search 
but retains the ideal of optimization. These theories posit an optimal stopping rule that requires 
the organism to stop search when the costs of further search exceed its benefi ts. This rule has been 
criticized because it can lead to infi nite regress: To compute the optimal trade-off between the costs 
and benefi ts of search itself carries costs, which must be factored in to a “meta” analysis of the costs 
and benefi ts of computing the costs and benefi ts of search, and so on. A second point of criticism 
is that accurate estimates of benefi ts and costs—such as opportunity costs, incurred by foregoing 
the benefi ts of activities other than continuing search—can be troublesome to obtain and may even 
demand knowledge close to omniscience. Therefore, optimization under constraints can lead to 
models that are descriptively even more unrealistic than rational theories that ignore search.

Nonrational theories model search with simple stopping rules rather than optimal stopping 
rules. Search can concern either of two kinds of information, alternatives (such as houses and 
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spouses) or cues (such as reasons to choose a given house). Two different classes of nonrational 
theories deal with these types of search: aspiration level theories with the search for alternatives 
and fast and frugal heuristics with the search for cues.

4.1  Aspiration Level Theories

Aspiration level theories assume that an agent has an aspiration level, which is either a value on a 
goal variable (e.g., profi t or market share) or, in the case of multiple goals, a vector of goal values 
that is satisfactory to the agent. When choosing among a large (possibly even infi nite) set of alter-
natives, agents search until they fi nd the fi rst alternative that meets or surpasses their aspiration 
level, at which point search stops and that alternative is chosen. For instance, agents might set 
a lower limit on the price at which they would be willing to sell their shares in a company (the 
aspiration level). In this satisfying model, the agent makes no attempt to calculate an optimal 
stopping point, in this case, the best day on which to sell. The aspiration level need not be fi xed, 
but can be dynamically adjusted to feedback. For instance, if the investor observes that the share 
price is monotonically increasing rather than fl uctuating over time, they might conclude that 
there is some stable trend and adjust the limit upward. Thus, aspiration level theories model 
decision making as a dynamic process in which alternatives are encountered sequentially and 
aspiration levels stop search. The challenge is to understand where aspiration levels come from in 
the fi rst place (Simon, 1982; Selten, 1998).

4.2  Fast and Frugal Heuristics

In a different class of problems, the set of alternatives is given (i.e., need not be searched for), 
and the agent needs to search for cues that indicate which alternative to choose. For instance, an 
employer might want to decide which of three job applicants to hire or a bettor to predict which 
of two soccer teams will win a game. Fast and frugal heuristics employ simple stopping rules to 
make such inferences with little computation (“fast”) and information (“frugally”). For instance, 
the “take the best” heuristic bases its inference solely on the best cue on which the alternatives 
differ and ignores the rest. Such “one-reason” decision making allows agents to make decisions 
quickly and, counterintuitively, often as or more accurately than the “optimal” linear model (mul-
tiple regression), which looks up and integrates all available cues. Other types of fast and frugal 
heuristics include ignorance-based decision making (see below) and elimination heuristics. Thus, 
fast and frugal heuristics model decision making as a dynamic process in which cues or reasons are 
sequentially searched for—in memory or in the outside world—and simple stopping and decision 
rules determine inferences. The challenge here is to understand what the class of heuristics is, how 
a heuristic is selected, and in which environments it is successful (Gigerenzer et al., 1999).

5.  Ecological Rationality vs. Internal Consistency

A classical criterion for rational choice is internal consistency or coherence. Numerous rules of 
consistency have been formulated, for instance, transitivity and additivity of probabilities. These 
rules, which are the building blocks of rational theories, have been used to test the limits of human 
rationality, beginning with the work of Jean Piaget and Bärbel Inhelder. Nonrational theories, in 
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contrast, place less weight on internal consistency; for instance, some fast and frugal heuristics can 
violate transitivity. Instead, nonrational theories emphasize performance in the external world, both 
physical and social. Measures of external performance include the accuracy, speed, frugality, cost, 
transparency, and justifi ability of decision making. Note that internal consistency does not guaran-
tee that any of these external criteria are met. For instance, the statement “there is a 0.01 probability 
that cigarette smoking causes lung cancer and a 0.99 probability that it does not” is internally con-
sistent in that the probabilities add up to 1, but according to relevant research, it is not accurate.

How can heuristics be simple and accurate at the same time? Two major answers have been 
proposed: They can exploit the structure of environments, and simplicity can entail robustness.

5.1  Structure of Environments

The term “ecological rationality” refers to the match between a heuristic and the structure of 
the information in a particular environment. The more closely a heuristic refl ects important 
aspects of this structure, the more likely it is to succeed in that environment. Simple heuristics 
can succeed by exploiting the structure of information in an environment. In other words, the 
environment can do part of the work for the heuristic. For instance, consider the problem of pre-
dicting which of two soccer teams will win a game, which of two cities is larger, or which of two 
colleges provides the better education. Assume a fairly ignorant agent who has heard of only one 
of the two teams, cities, or colleges. He can use the “recognition” heuristic, which infers that the 
recognized object will win the game, have the larger population, or provide the better education 
(Gigerenzer et al., 1999). Such ignorance-based decision making works well in environments 
where ignorance (e.g., lack of name recognition) is not random but systematic, as in competitive 
environments where the sequence in which the names of objects are fi rst encountered is corre-
lated with their performance, power, or size. The structure of such environments does part of the 
work in the sense that it allows the recognition heuristic to glean information from ignorance. 
If the correlation between recognition and the criterion is suffi ciently large, a counterintuitive 
result is observed: Less knowledge leads to more accurate predictions than more knowledge, be-
cause people who recognize both alternatives cannot use the recognition heuristic.

Cricket, baseball, and other sports in which players need to catch a ball provide a second illus-
tration of how heuristics can exploit the structure of environments. Suppose that we want to build 
a robot that can catch a ball—a thought experiment because none exists so far. One approach to 
building robots in artifi cial intelligence is to endow them with a complete representation of the 
environment and a supercomputer that can draw inferences from this information. Taking this 
approach, which is consistent with rational theories, one would feed the robot parabolic functions 
describing all the trajectories that the ball might follow, and equip it with instruments for measur-
ing the ball’s initial velocity and angle to select the right parabola. Further instruments would be 
needed to measure the speed and direction of the wind at each point of the ball’s fl ight, as well 
as myriad other factors, such as spin, in order to calculate the ball’s deviation from the parabolic 
course. These measurements would be analyzed by a computer that would then compute where 
the ball will land. Professional athletes, in contrast to this hypothetical robot, seem to use a simple 
heuristic for catching (McLeod & Dienes, 1996). They start running with their eyes fi xed on the 
ball and adjust their speed to keep their angle of gaze constant (or within a certain range). Using 
this heuristic, a robot can intercept the ball without searching for the information that a “rational” 
robot requires. It pays attention to only one variable—the angle of gaze, which does all the work. 
The “heuristic” robot does not calculate where the ball will land, but it will be there when it does.
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These examples illustrate how heuristics can succeed by exploiting structures of environ-
ments. These heuristics are “domain-specifi c” rather than “domain-general,” that is, they work 
in a class of environments in which they are ecologically rational. Heuristics do not provide a 
universal rational calculus, but a set of domain-specifi c mechanisms similar to the parts of a 
Swiss army knife, and have been referred to collectively as the “adaptive toolbox” (Gigerenzer & 
Selten, 2001).

5.2  Robustness

A second reason why a simple heuristic can make accurate predictions is robustness. To under-
stand this point, it is necessary to distinguish between data fi tting (i.e., determining the best-
fi  tting parameter values for a model given a specifi c body of data) and prediction (i.e., using these 
parameter values to predict new data). For data fi tting, it generally holds that the more parameters 
one uses in a model, the better the fi t; for prediction; however, there can be a point where less is 
more (Foster & Sober, 1994). For instance, if one records the air temperature on all 365 days in 
a year, one can fi t the resulting jagged curve increasingly well as one adds more free parameters to 
the model. However, if one wants to predict air temperature during the coming year, the model 
that best fi ts the past data may result in less accurate predictions than a simpler model with fewer 
parameters and a worse fi t. Similarly, one can fi t one ball’s trajectory through the air to arbitrary 
degrees of precision, but this may be of little help in predicting the next ball’s trajectory.

More generally, in noisy environments only part of the available information generalizes to 
the future. The art of building a good model is to fi nd this part and to ignore the rest. The more 
noise in the environment, the more that models with many free parameters tend to “overfi t,” that 
is, to refl ect the noise. Overfi tting can become a problem when overly powerful mathematical 
models, such as neural networks with numerous hidden units and multiple regression with many 
predictors, are used to fi t and then predict behavioral data (Geman et al., 1992). Simplicity can 
reduce overfi tting and thereby produce robust decision strategies. An alternative route to robust-
ness is to use the computational power of modern computers to search through large numbers 
of models to fi nd one that is robust by a given criteria. But one often does not have the time and 
knowledge to proceed this way.

Heuristics can be fast, frugal, and accurate by exploiting the structure of information in 
environments and by being robust. But these are not the only reasons why strategies that work 
with limited knowledge and time can be successful. For instance, there is evidence that language 
learning fails to occur in fully formed neural networks, but successfully develops in networks that 
begin with limited working memory and gradually mature. This fi nding has been interpreted 
to mean that young children’s memory limitations may be an important precondition for rapid 
language acquisition (Elman, 1993). Thus, cognitive limitations might not always be regrettable 
defi cits, but actually enable learning by starting small.

6.  Emotions, Imitation, and Social Norms

Like rational theories, most nonrational theories rely on cognitive building blocks, such as aspi-
ration levels, search heuristics, and stopping rules. However, Homo sapiens is not only the most 
intelligent, but also the most emotional and social species—one of the very few in which un-
related members of the same species cooperate. Theories of decision making have often neglected 
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emotions, and sometimes even cast them as the very opposite of rationality. However, emotions 
can aid decisions making just as fast and frugal cognitive heuristics do. For instance, falling in 
love can be seen as a powerful stopping rule that ends search for a partner and strengthens com-
mitment to the loved one. This emotion guarantees commitment more effectively than would 
a nonemotional mind that tried to optimize partner quality and dropped the current partner 
each time a more promising one came along. Similarly, feelings of parental love, triggered by the 
presence or smile of one’s infant, can prevent cost-benefi t computations, so that the question of 
whether it is worthwhile to endure all the sleepless nights and other challenges of baby care sim-
ply never arises. Instead, love keeps parents focused on the adaptive task of protecting and pro-
viding for their offspring. To take another emotion as an example, disgust can limit the choice set 
of potential foods and help one to avoid becoming ill from spoiled food. Finally, emotions such 
as fear and anger can speed decision making to the point that there is no decision to be made.

Like emotions, social norms and social imitation can function as decision-making guide-
lines that keep individual learning and information search to a minimum (Gigerenzer & Selten, 
2001). Social heuristics such as “eat what other conspecifi cs eat” or “prefer mates preferred by 
others” can guide behavior without much information gathering and bring benefi ts such as a 
reduced likelihood of food poisoning and social disapproval. These forms of social rationality can 
be found throughout the animal world. For instance, female guppies prefer the mates that other 
females prefer, and such social imitation can even reverse their prior preferences for one male over 
another. In humans, media-fueled mate preferences, and occasionally even academic hiring, fol-
low similar heuristics, such as “If they want him, then we want him!” Custom, not optimization, 
governs much of life, even in the economic and intellectual worlds.

Social systems foster not only individual but distributed intelligence. That is, by cooperating 
with one another, myopic individuals can exhibit collective rationality. Communities of social 
insects are one example of such intelligent “superorganisms,” as is division of labor in human 
industry and politics. The intelligence of a superorganism can be seen as the emergent property 
of a few adaptive heuristics of its members. Honey bees, for instance, make intelligent collective 
decisions about where to build a new hive that seem to emerge from individual bees’ application 
of a few simple, well-adapted heuristics. Complex phenomena need not to be modeled in terms 
of complex knowledge and computation.

7.  Summary

Nonrational theories take account of what we know about humans’ and other species’ capacities 
rather than assuming unlimited knowledge, memory, time, and other resources. They model 
heuristics—cognitive, emotional, and social—that exploit the structure of information in real 
environments. Nonrational theories confl ict with the ideal of Homo economicus and other visions 
of humans developed in the image of an omniscient God, but provide us with a more realistic 
picture of decision making when knowledge is scarce, deadlines are rapidly approaching, and the 
future is hard to predict.

See also: Bayesian Theory: History of Applications; Bounded and Costly Rationality; Bound-
ed Rationality; Decision and Choice: Random Utility Models of Choice and Response Time;  
Decision  Biases, Cognitive Psychology of; Decision Theory: Bayesian; Heuristics for Decision 
and Choice; Luce’s Choice Axiom; Rational Choice Explanation: Philosophical Aspects; Subjec-
tive Probability Judgments; Utility and Subjective Probability: Contemporary Theories; Utility 
and Subjective Probability: Empirical Studies.
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