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Some theorists, ranging from W. James (1890) to contemporary psychologists, have argued that
forgetting is the key to proper functioning of memory. The authors elaborate on the notion of beneficial
forgetting by proposing that loss of information aids inference heuristics that exploit mnemonic infor-
mation. To this end, the authors bring together 2 research programs that take an ecological approach to
studying cognition. Specifically, they implement fast and frugal heuristics within the ACT-R cognitive
architecture. Simulations of the recognition heuristic, which relies on systematic failures of recognition
to infer which of 2 objects scores higher on a criterion value, demonstrate that forgetting can boost
accuracy by increasing the chances that only 1 object is recognized. Simulations of the fluency heuristic,
which arrives at the same inference on the basis of the speed with which objects are recognized, indicate
that forgetting aids the discrimination between the objects’ recognition speeds.
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In The Mind of a Mnemonist, Luria (1968) examined one of the
most virtuoso memories ever documented. The possessor of this
memory—S. V. Shereshevskii, to whom Luria referred as S.—
reacted to the discovery of his extraordinary powers by quitting his
job as a reporter and becoming a professional mnemonist. S.’s
nearly perfect memory appeared to have “no distinct limits” (p.
11). Once, for instance, he memorized a long series of nonsense
syllables that began “ma, va, na, sa, na, va, na, sa, na, ma, va”
(Luria, 1968, p. 51). Eight years later, he recalled the whole series
without making a single error or omission. This apparently infal-
lible memory did not come without costs. S. complained, for
example, that he had a poor memory for faces: “People’s faces are
constantly changing; it is the different shades of expression that
confuse me and make it so hard to remember faces” (p. 64).
“Unlike others, who tend to single out certain features by which to
remember faces,” Luria wrote, “S. saw faces as changing patterns,
. . . much the same kind of impression a person would get, if he
were sitting by a window watching the ebb and flow of the sea’s
waves” (p. 64). One way to interpret these observations is that
cognitive processes such as generalizing, abstracting, and classi-
fying different images of, for example, the same face require
ignoring the differences between them. In other words, crossing
the “‘accursed’ threshold to a higher level of thought” (Luria,

1968, p. 133), which in Luria’s view S. never did, may require the
ability to forget.

Is forgetting a nuisance and a handicap or is it essential to the
proper functioning of memory and higher cognition? Much of the
experimental research on memory has been dominated by ques-
tions of quantity, such as how much information is remembered
and for how long (see Koriat, Goldsmith, & Pansky, 2000). From
this perspective, forgetting is usually viewed as a regrettable loss
of information. Some have suggested, however, that forgetting
may be functional. One of the first to explore this possibility was
James (1890), who wrote, “In the practical use of our intellect,
forgetting is as important a function as recollecting” (p. 679). In
his view, forgetting is the mental mechanism behind the selectivity
of information processing, which in turn is “the very keel on which
our mental ship is built” (James, 1890, p. 680).

A century later, Bjork and Bjork (1988) argued that forgetting
prevents out-of-date information—say, old phone numbers or
where one parked the car yesterday—from interfering with the
recall of currently relevant information. Altmann and Gray (2002)
make a similar point that to be able to focus on current goals, it
helps to forget previous goals. Forgetting prevents the retrieval of
information that is likely obsolete. In fact, this is a function of
forgetting that S. paradoxically had to do consciously. As a pro-
fessional mnemonist, he committed thousands of words to mem-
ory. Learning to erase the images he associated with those words
that he no longer needed to recall was an effortful, difficult process
(Luria, 1968).

How and why forgetting might be functional has also been the
focus of the extensive analysis conducted by Anderson and col-
leagues (Anderson & Milson, 1989; Anderson & Schooler, 1991,
2000; Schooler & Anderson, 1997). On the basis of their rational
analysis of memory, they argued that much of memory perfor-
mance, including forgetting, might be understood in terms of
adaptation to the structure of the environment. The key assump-
tions of this rational analysis are that the memory system (a) meets
the informational demands stemming from environmental stimuli
by retrieving memory traces associated with the stimuli and (b)
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acts on the expectation that environmental stimuli tend to recur in
predictable ways.

The rational analysis implies that memory performance reflects
the patterns with which stimuli appear and reappear in the envi-
ronment. To test this implication, Anderson and Schooler (1991)
examined various environments that place informational demands
on the memory system and found a strong correspondence between
the regularities in the occurrence of information (e.g., a word’s
frequency and recency of occurrence) in these environments (e.g.,
conversation) and the classic learning and forgetting curves (e.g.,
as described by Ebbinghaus, 1885/1964). In a conversational en-
vironment, for instance, Anderson and Schooler (1991) observed
that the probability of hearing a particular word drops as the period
of time since it was last used grows, much as recall of a given item
decreases as the amount of time since it was last encountered
increases. More generally, they argue that human memory essen-
tially bets that as the recency and frequency with which a piece of
information has been used decreases, the likelihood that it will be
needed in the future also decreases. Because processing unneeded
information is cognitively costly, the memory system is better off
setting aside such little needed information by forgetting it.

In what follows, we extend the analysis of the effects of forget-
ting on memory performance to its effects on the performance of
simple inference heuristics. To this end, we draw on the research
program on fast and frugal heuristics (Gigerenzer, Todd, & the
ABC Research Group, 1999) and the ACT-R research program
(Anderson & Lebiere, 1998). Both programs share a strong eco-
logical focus. The fast and frugal heuristics program examines
simple strategies that exploit informational structures in the envi-
ronment, enabling the mind to make surprisingly accurate deci-
sions without much information or computation. The ACT-R re-
search program strives to develop an encompassing theory of
cognition, specified to such a degree that phenomena from per-
ceptual search to the learning of algebra might be modeled within
the same framework. In particular, ACT-R offers a plausible
model of memory that is tuned to the statistical structure of
environmental events. This model of memory will be central to our
implementation of the recognition heuristic (Goldstein & Giger-
enzer, 2002) and the fluency heuristic (e.g., Jacoby & Dallas, 1981;
Kelley & Jacoby, 1998), both of which depend on phenomenolog-
ical assessments of memory retrieval. The former operates on
knowledge about whether a stimulus can be recognized, whereas
the latter relies on an assessment of the fluency, the speed, with
which a stimulus is processed. By housing these memory-based
heuristics in a cognitive architecture, we aim to provide precise
definitions of heuristics and analyze whether and how loss of
information—that is, forgetting—fosters the performance of these
heuristics. We begin by describing the recognition heuristic, the
fluency heuristic, and the ACT-R architecture.

How Recognition or Lack Thereof Enables Heuristic
Inference: The Recognition Heuristic

Common sense suggests that ignorance stands in the way of
good decision making. The recognition heuristic belies this intu-
ition. To see how the heuristic turns ignorance to its advantage,
consider the simple situation in which one must select whichever
of two objects is higher than the other with respect to some
criterion (e.g., size or price). A contestant on a game show, for

example, may have to make such decisions when faced with the
question, “Which city has more inhabitants, San Diego or San
Antonio?” How she makes this decision depends on the informa-
tion available to her. If the only information on hand is whether she
recognizes one of the cities and there is reason to suspect that
recognition is positively correlated with city population, then she
can do little better than rely on her (partial) ignorance. This kind
of ignorance-based inference is embodied in the recognition heu-
ristic (Goldstein & Gigerenzer, 1999, 2002), which for a two-
alternative choice can be stated as follows: If one of two objects is
recognized and the other is not, then infer that the recognized
object has the higher value with respect to the criterion.

Partial ignorance may not sound like much for a decision maker
to go on. But because lack of recognition knowledge is often
systematic rather than random, failure to recognize something may
be informative. The recognition heuristic exploits this information.

Empirical Support

To find out whether people use the recognition heuristic, Gold-
stein and Gigerenzer (1999, 2002) pursued several experimental
approaches. In one, they presented University of Chicago students
with pairs of cities randomly drawn from the 22 largest cities in the
United States and in Germany, respectively. The task was to infer
which city in each pair had the larger population. The Chicago
students made a median of 71% correct inferences in the American
city set. When quizzed on the German city pairs, they made a
median of 73% correct inferences. If one assumes that more
knowledge leads to better performance, these results are counter-
intuitive: Years of living in the United States gave these students
ample opportunity to learn facts about American cities that could
be useful for inferring city populations, whereas they knew little to
nothing about the German cities beyond recognizing about half of
them. Why would they perform slightly better on German city
pairs? According to Goldstein and Gigerenzer (2002), the Amer-
ican students’ meager knowledge about German cities is precisely
what allowed them to infer that the cities they recognized were
larger than the cities they did not recognize. The recognition
heuristic was of no use to them when making judgments about
American cities because they recognized them all. Goldstein and
Gigerenzer referred to this surprising phenomenon as the less-is-
more effect and showed analytically that recognizing an interme-
diate number of objects in a set can yield the highest proportion of
correct answers. All else being equal, recognizing more than this
many objects decreases inferential accuracy.

The following example, adapted from Goldstein and Gigerenzer
(2002), provides an intuitive illustration of how the recognition
heuristic gives rise to the less-is-more effect. Suppose that three
brothers have to take a test on the 20 largest German cities. The
youngest brother has never heard of any of the cities, the middle
brother has heard of 10 of them, and the eldest brother has heard
of them all. The middle brother tends to know the names of the
larger cities. In fact, the 10 cities he recognizes are larger than the
10 cities he does not in, say, 80 of the 100 possible pairs to which
he can apply his recognition knowledge (i.e., the 100 pairs in
which he recognizes one city and does not recognize the other).
Thus, his recognition validity (i.e., the proportion of times that a
recognized object has a higher value on the criterion than does an
unrecognized object in a given sample) is .80. Both the middle and
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the eldest brothers have some knowledge of German cities aside
from recognition. When they recognize both cities in a pair, they
have a 60% chance of correctly choosing the larger one on the
basis of this other knowledge, so their knowledge validity is .60.

Suppose the tester randomly draws pairs from the 20 largest
German cities and asks the three brothers to decide which member
of each pair has the larger population. Who will score highest? The
youngest brother guesses the answer to every question and thus
gets 50% correct. The eldest brother relies on his knowledge about
the cities to answer every question and scores 60% correct. Neither
the youngest brother nor the eldest brother can use the recognition
heuristic, the former because he fails to recognize any of the cities
and the latter because he recognizes them all. The only one with
partial ignorance to exploit, the middle brother, makes 68 correct
inferences. He surpasses the inference accuracy of the eldest
brother because his recognition validity of .80 exceeds the elder
brother’s knowledge validity of .60.1

How Recognition Exploits Environmental Correlations

How can people learn the association between recognition and a
criterion when the criterion is not accessible? Goldstein and Gig-
erenzer (2002) proposed that there are “mediators” in the environ-
ment that both reflect the criterion and are accessible to the
decision maker. For example, although a person may not know the
population size of a German city, its size may be reflected in how
often it is mentioned in the person’s environment. This frequency
of mention, in turn, is correlated with how likely the person is to
recognize the city’s name. This chain of correlations would enable
people to make inferences about a city’s size on the basis of
whether they recognized it. To test the extent to which environ-
mental frequencies operate as mediators between city recognition
and city population, Goldstein and Gigerenzer (2002) computed
the correlations among three measures for each of the 83 German
cities with more than 100,000 inhabitants: the actual population,
the number of times the city was mentioned in the Chicago
Tribune over a specific period, and the recognition rate, that is, the
proportion of University of Chicago students who recognized the
city (see upper portion of Figure 1).

The ecological correlation, that is, the correlation between how
often a city was mentioned in the Chicago Tribune and its popu-
lation, was .82. Does newspaper coverage of a city correlate with
the number of people who recognized it? Yes, the surrogate
correlation, that is, the correlation between how often a city was
mentioned and the number of people recognizing it, was .66.
Finally, the correlation between the number of people recognizing
a city and its population, known as the average recognition valid-
ity, was .60. In other words, the cities’ recognition rates were more
closely associated with how often they were mentioned than with
their actual populations. Because recognition tracks environmental
frequency more closely than it tracks population size in this
context, Goldstein and Gigerenzer (2002) suggested that environ-
mental frequency is the mediator between recognition and popu-
lation size.

The recognition heuristic relies on ignorance that is partial and
systematic. It works because lack of recognition knowledge about
objects such as cities, colleges, sports teams, and companies traded
on a stock market is often not random. For Goldstein and Giger-
enzer (2002), a lack of recognition comes from never having

encountered something, dividing the “world into the novel and
previously experienced” (p. 77). If human recognition were so
exquisitely sensitive to novelty that it treated as unrecognized only
those objects and events that one has never seen, then experience
would eventually render the recognition heuristic inapplicable (see
Todd & Kirby, 2001). Like the ignorance that comes from lack of
experience, forgetting may maintain or even boost inferential
accuracy by making the old, novel again. For illustration, consider
the oldest brother in the three-brother scenario. If he were able to
forget some of the city names, he could take advantage of the
recognition heuristic. The resulting changes in his performance
would depend on which cities he no longer recognized. If his
forgetting were random, he could not effectively exploit his “re-
covered” ignorance. If he tended to forget the names of smaller
cities (of which he is likely to have heard about much less fre-
quently), however, he could benefit from his ignorance. The rec-
ognition heuristic may not be the only inference strategy that could
thus benefit from forgetting.

How Retrieval Fluency Enables Heuristic Inference:
The Fluency Heuristic

A key property of heuristics is that they are applicable under
limited circumstances that, ideally, can be precisely defined. The
recognition heuristic, for example, cannot be applied when both
objects are either recognized or unrecognized. Thus, if a person’s
recognition rate is either very low or very high, he or she can rarely
use the heuristic. When he or she does not recognize either object,
use of the recognition heuristic gives way to, for instance, guess-
ing. When he or she recognizes both objects, more knowledge-
intensive strategies, such as the take-the-best heuristic, can be
recruited (Gigerenzer et al., 1999). Take-the-best sequentially
searches for cues that are correlated with the criterion in the order
of their predictive accuracy and chooses between the objects on the
basis of the first cue found that discriminates between them (Gig-
erenzer & Goldstein, 1996).

Another, less knowledge-intensive, inference strategy that can
be applied to a two-alternative choice when both objects are
recognized is the fluency heuristic (see, e.g., Jacoby & Brooks,
1984; Toth & Daniels, 2002; Whittlesea, 1993). It can be ex-
pressed as follows: If one of two objects is more fluently pro-
cessed, then infer that this object has the higher value with respect
to the criterion.

Like the recognition heuristic, the fluency heuristic relies on
only one consideration to make a choice; in this case, the fluency
with which the objects are processed when encountered. In nu-
merous studies, processing fluency mediated by prior experience
with a stimulus has been shown to function as a cue in a range of
judgments. For example, more fluent processing due to previous
exposure can increase the perceived fame of nonfamous names

1 This score of correct inferences is derived as follows: There are a total
of 190 comparisons. In 45 of them, the middle brother resorts to guessing
because he recognizes none, thus scoring 50% correct inferences. In
another 45, in which he recognizes both, he scores 60% correct (the
validity of his additional knowledge). In the remaining 100 comparisons,
he scores 80% correct inferences (due to the validity of his recognition
knowledge). Thus, the total score of correct inferences equals 45 ! .5 "
45 ! .6 " 100 ! .8 # 129.5/190 # 68%.

612 SCHOOLER AND HERTWIG



(the false fame effect; Jacoby, Kelley, Brown & Jasechko, 1989)
and the perceived truth of repeated assertions (the reiteration
effect; Begg, Anas, & Farinacci, 1992; Hertwig, Gigerenzer, &
Hoffrage, 1997).

As we show shortly, the ACT-R architecture offers the possi-
bility of precisely defining fluency and how it depends on the past
history of environmental exposure. As in the case of the recogni-

tion heuristic, the ACT-R architecture allows us to examine how
forgetting may affect the fluency heuristic’s accuracy. But unlike
the recognition heuristic, the fluency heuristic seems to reflect the
common intuition that more information is better (see Hertwig &
Todd, 2003). To appreciate this, let us return to the oldest of the
three brothers, who recognizes all the 20 largest German cities. If
his history of exposure to the cities, mediated by this history’s

Figure 1. The triangle on top, adapted from Goldstein and Gigerenzer’s (2002; Figure 7), shows the Pearson
correlations between how often a German city was mentioned in the Chicago Tribune, its population, and its
recognition rate. The lower portion outlines the steps in the simulation described in the text. 1st: Environments
are constructed based on word frequency information from the Chicago Tribune. 2nd: The base level activations
of the city name records were learned from the environment. 3rd: The model’s recognition rates were obtained
by fitting it to the students’ recognition rates. 4th: The recognition heuristic was applied to the German city task,
drawing on the simulated recognition rates.
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effect on fluency, were indicative of their population size, he may
now be able to match or even outdo the performance of the middle
brother. To figure out which brother will do best, one needs to
know the two heuristics’ validities (the percentage of correct
inferences that each yields in cases in which it is applicable) and
application rates (to what proportion of choices can each heuristic
be applied).

The fluency heuristic, in contrast to the recognition heuristic,
does not exploit partial ignorance but rather graded recognition.
Could it also benefit from forgetting? This is one of the key
questions that we address in our analysis. Specifically, we
investigate the role of forgetting in memory-based heuristics by
modeling the relation between environmental exposure and the
information in memory on which heuristics such as recognition
and fluency feed. To lay the necessary groundwork, we now
provide a brief introduction to the ACT-R architecture and
describe how we implemented the recognition and fluency
heuristics within it.

A Brief Overview of ACT-R

ACT-R is a unified theory of cognition that accounts for a
diverse set of phenomena ranging from subitizing (Peterson &
Simon, 2000) to scientific discovery (Schunn & Anderson, 1998).
A central distinction in ACT-R is between declarative knowledge
(knowing that) and procedural knowledge (knowing how). ACT-R
models procedural knowledge with sets of production rules (i.e.,
if–then rules) whose conditions (the “if” part of the rule) are
matched against the contents of declarative memory. The funda-
mental declarative representation in ACT-R is the chunk, which
we refer to here as a record to highlight the parallels between
memory retrieval and information retrieval in library science. If all
the conditions of a production rule are met, then the rule fires, and
the actions specified in the “then” part of the rule are carried out.
These actions can include updating records, creating new records,
setting goals, and initiating motor responses. For example, Table 1

shows a set of colloquially expressed production rules that imple-
ment the recognition heuristic.

Which of the rules in Table 1 will apply depends on whether
records associated with City X and City Y can be retrieved. The
overall performance of the recognition heuristic depends on (a)
how often each of these rules applies and (b) when they do apply,
how accurate the inferences are. Hereafter we refer to the complete
set of rules in Table 1 as the recognition heuristic and to the
second rule specifically as the recognition rule.

In ACT-R, declarative memory and procedural memory interact
through retrieval mechanisms that assume that certain events tend
to recur in the environment at certain times. In essence, the records
that the system retrieves at a given point can be seen as a bet about
what will happen next in the environment. In this framework,
human memory functions as an information retrieval system, and
the elements of the current context constitute a query to long-term
memory to which the memory system responds by retrieving the
records that are most likely to be relevant.

Many word processors incorporate a timesaving feature that,
like ACT-R, takes advantage of forgetting. When a user goes to
open a document file, the program presents a “file buffer,” a list of
recently opened files from which the user can select. Whenever the
desired file is included on the list, the user is spared the effort of
searching through the file hierarchy. For this device to work
efficiently, however, the word processor must provide users with
the files they actually want. It does so by “forgetting” files that are
considered unlikely to be needed on the basis of the assumption
that the time since a file was last opened is negatively correlated
with its likelihood of being needed now. Similarly, the declarative
retrieval mechanism in ACT-R makes more recently retrieved
memory records more accessible on the assumption that the prob-
ability that a record is needed now depends in part on how long
ago it was last needed.

Conducting Search

ACT-R makes the assumptions that information in long-term
memory is stored in discrete records and that retrieval entails
searching through them to find the one that achieves some pro-
cessing goal of the system. The explanatory power of the approach
depends on the system’s estimates of the probability that each
record in long-term memory is the one sought. In keeping with
common usage in library science, we call this the relevance prob-
ability.2 Any information retrieval system must strike a balance
between the rate of recall, in this context the likelihood of finding
the desired record (i.e., the proportion of hits), and the precision of
recall, or the likelihood of retrieving irrelevant records (i.e., the
proportion of false alarms). In ACT-R, this balance is achieved
through a guided search process in which the records are retrieved
in order of their relevance probabilities, with the most promising
records looked up first.

Stopping Search

At some point, the information retrieval system must terminate
search for further records. If p is the relevance probability, C is the

2 In previous publications, Anderson and colleagues have called this
need probability.

Table 1
The Production Set That Implements the Recognition Heuristic

Rule Description

Guessing
Neither city

recognized
If the goal is to choose the larger of two cities, City X

and City Y,
and a record with the name City X cannot be

retrieved,
and a record with the name City Y cannot be

retrieved,
then set a goal to guess.

Recognition If the goal is to choose the larger of two cities, City X
and City Y,

and a record with the name City X can be retrieved,
and a record with the name City Y cannot be

retrieved,
then set a goal to respond that City X is the larger

city.
Guessing

Both cities
recognized

If the goal is to choose the larger of two cities, City X
and City Y,

and a record with the name City X can be retrieved,
and a record with the name City Y can be retrieved,
then set a goal to guess.
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cost of attempting to match a memory record against a condition of
a production rule, and G is the gain associated with successfully
finding the target, then according to ACT-R the memory system
should stop considering records when:

pG ! C. (1)

In other words, the system stops searching for more memory
records when the expected value ( pG) of the next record is less
than the cost of considering it. If the next record to be considered
has a relevance probability of less than C $ G, search will be
stopped.

Activation Reflects Relevance

In ACT-R, the activation of a declarative memory record re-
flects its relevance probability. Specifically, the activation, A,
equals the log odds (i.e., ln[p/(1–p)]) that the record will be needed
to achieve a processing goal (i.e., that it will match a condition of
a production rule that fires). A record’s activation is calculated by
a combination of the base-level strength of the record, Bi, and the
Sji units of activation the record receives from each of the j
elements of the current context:

Ai " Bi # !
j

Sji . (2)

A record’s base-level strength is rooted in its environmental pat-
tern of occurrence. Specifically, Bi is determined by how fre-
quently and recently the record has been encountered in the past:

B " ln%!
j#1

n

tj
d&, (3)

where the record has been encountered n times in the past and the
jth encounter occurred tj time units in the past. Finally, d is a decay
parameter that captures the amount of forgetting in declarative
memory, thus determining how much information about an item’s
environmental frequency is retained in memory.3 Typically, d is
set to equal –.50, a value that has been shown to fit a wide range
of behavioral data (Anderson & Lebiere, 1998).

Consider, for illustration, the occurrence of American city
names in the front-page headlines of the New York Times. Each
circle in Figure 2 indicates a day on which a particular city
appeared in the front-page headlines between January 1, 1986, and
December 31, 1987. Clearly, there are drastic differences between
cities in their frequency of occurrence. The national capital, Wash-
ington, DC, was mentioned 37 times during that period, first on
January 14, 1986, and last on December 26, 1987. Seattle, in
contrast, was mentioned merely 3 times—710, 430, and 219 days
before January 1, 1988. Figure 2 also shows how these quantities
were used to determine base-level activation on January 1, 1988.
For this calculation, the parameter d, the decay rate, was set to
–.50, and the resulting activation for Seattle, for example, is
ln(710'.50 " 430'.50 " 219'.50) # '1.87.

Activation and Retrieval Probability

Whether a memory record’s activation exceeds the retrieval
criterion is determined by a noisy process. The sources of noise
include momentary fluctuations in a record’s estimated gain, esti-

mated cost, and the activation it receives from the current constel-
lation of context elements. These context elements could be part of
our external environment, such as words on a sign, or internal,
such as our mood or recently activated records. In the simulations
reported below, we do not model the influence of contextual
information, represented by the second term in Equation 2, in
detail but rather assume that it contributes to the overall variance
in activation. Because of its variability, the activation of a memory
record is better represented by a distribution of activation values
than by a single value, with B (see Equation 3) as the distribution’s
expected value. In ACT-R, activation is modeled as a logistic
distribution, which approximates a normal distribution. Figure 3
shows these distributions around the expected value of the activa-
tion for the cities depicted in Figure 2.

The probability that a record will be retrieved, that is, that its
activation will exceed the retrieval criterion, can be expressed as a
logistic function:

probability of record retrieval "
1

1 # e'%A'$&/s , (4)

where s captures momentary and permanent fluctuations in the
activation level of record i. Parameter $ equals ln C $ (G – C), a
stopping rule that is equivalent to the p ( C $ G-criterion from
Equation 1 but transformed into the activation scale. The propor-
tion of a record’s activation distribution that is above the retrieval
criterion, $, gives the probability that the particular record will be
retrieved. Retrieval of the memory record is crucial for our anal-
ysis of the recognition heuristic because we adopt Anderson,
Bothell, Lebiere, and Matessa’s (1998) assumption that retrieval of
a record implies recognition of the associated word or, in this case,
of the city name. The retrieval criterion $ is typically estimated by

3 Within ACT-R time dependent forgetting is attributed to memory
decay. In contrast, many memory researchers, beginning with McGeoch
(1932), have argued that tying forgetting to the passage of time through
decay is simply a redescription of the empirical phenomenon rather than a
description of an underlying process. As an alternative to decay, research-
ers have typically favored explanations that attribute time dependent for-
getting to interference (e.g., Estes, 1955; Raaijmakers, 2003). On the
interference view of forgetting, memory for a stimulus gets encoded in a
particular context, consisting of myriads of internal and external elements.
Those, in turn, have the potential to later act as retrieval cues. The context,
however, “drifts” as cues (randomly) enter and leave it. As a consequence,
fewer cues are shared between the original encoding and the retrieval
contexts over time, thus lowering the probability of recall of the target
stimulus. Within the ACT-R framework memory decay is claimed to be
functional, but at the same time there is no commitment to the underlying
causes of memory decay. Thus, ACT-R does not preclude explaining decay
as the aggregate result of factors such as contextual drift process, neural
degradation, or some other causes altogether. In addition, even the inter-
ference view of forgetting is not incompatible with ACT-R’s premise that
forgetting is instrumental in the organism meeting the informational de-
mands posed by the environment. For instance, it is reasonable to assume
that the rate at which new associations are strengthened influences the
relative accessibility of older and newer memories. Specifically, to the
extent that associations between cues and new memories are strengthened,
the bonds between these cues and older memories will be weakened. Such
a contingency leaves open the possibility that, over ontogenetic or phylo-
genetic times, the rate at which new associations are strengthened is set so
as to tune the accessibility of older and newer memories to the informa-
tional demands posed by the environment.
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fitting models to data. The value of 1.44 used in Figure 3 is taken
from the subsequent simulations. As Figure 3 shows, about 1/20 of
the activation distribution for Denver, for example, lies to the right
of the retrieval criterion, corresponding to a 6% chance that Den-
ver will be recognized.

In brief, the relevance probability of each memory record is
reflected in its distribution of activation. Records are searched in
order of their activation until either a record is found that satisfies
the current condition or the activation of the next record to be
considered is so low that it is not worth considering.4

Activation and Retrieval Time

In ACT-R, retrieval time is an exponential function of activa-
tion:

retrieval time for a record " Fe'A (5)

where A is the activation for a particular record and F is a scale
parameter. Anderson et al. (1998) found that values of F can be
systematically estimated from the retrieval threshold, $, using the
equation F # .348e$, so $ of 1.44 yields a value of 1.47 for F.
Figure 4 plots Equation 5 for these parameter values, and the solid
line represents the range of retrieval times that would be observed
for activation values exceeding the retrieval threshold. As Figure 4
shows, the lower the activation, the more time it takes to retrieve
a record. The open circle represents the retrieval time for a mem-
ory record whose activation falls just above $. A memory record
with activation below this point will fall short of the retrieval
criterion and, because records with such low activations are un-
likely to achieve processing goals, will fail to be retrieved at all. As

Figure 4 reveals, subsequent increases in activation lead to dimin-
ishing reductions in retrieval time, a property that, as we show
shortly, is crucial to understanding how forgetting impacts the
fluency heuristic. We now turn to the implementation of the
recognition and fluency heuristics within ACT-R, which depend
on the probability and speed of retrieval, respectively.

The Recognition and Fluency Heuristics:
Keys to Encrypted Environmental Frequency

In ACT-R, activation tracks environmental regularities, such as
an object’s frequency and recency of occurrence. Therefore, acti-
vation differences partly reflect frequency differences, which, in
turn, may be correlated with a characteristic of the object, such as
the population of a city. Thus, it may seem that inferences could be
based on activation values read off the records. However, appli-
cations of ACT-R have long assumed that, just as the long-term
potentiation of neurons in the hippocampus cannot be tapped
directly, subsymbolic quantities such as activation cannot be ac-
cessed directly. We nevertheless propose that the system can
capitalize on differences in activation associated with various
objects by gauging how it responds to them. Two responses that
are correlated with activation in ACT-R are (a) whether a record
associated with a specific object can be retrieved and (b) how
quickly the record can be retrieved. The first, binary response

4 For those who doubt the strictly serial nature of this search, Anderson
and Lebiere (1998) have implemented a parallel connectionist model that
yields the same result.

Figure 2. Number of days on which various city names were mentioned on the front page of the New York
Times headlines.
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underlies our implementation of the recognition heuristic, and the
second, continuous response underlies our implementation of the
fluency heuristic. We show that the heuristics can be understood as
tools that indirectly tap the environmental frequency information
locked in the activation values. The heuristics’ effectiveness de-
pends on the strength of the chain of correlations linking the
criteria, environmental frequencies, activations, and responses. As
we will demonstrate, forgetting strengthens this chain. Before we
describe the simulations, a more general remark about the notion
of recognition in ACT-R is in order.

An ACT-R Model of Recognition

In modeling the recognition and fluency heuristics, we borrow
from the Anderson et al. (1998) account of recognition. In an
episodic recognition task, a person decides whether an item, typ-
ically a word, has been encountered in some specific context, say,
in a newspaper article. The responses of the Anderson et al. model
are determined by whether various memories are retrieved, thus
the model assumes an all-or-none or a high-threshold notion of
recognition, which is consistent with how Goldstein and Gigeren-
zer (2002) treat recognition.

In the literature on recognition memory, there is debate about
whether such high-threshold models are compatible with the re-
ceiver operating characteristic (ROC) curves typically observed in
recognition memory experiments (e.g., Batchelder, Riefer & Hu,

1994; Kinchla, 1994; Malmberg, 2002). ROC curves, which are
diagnostic of a participant’s ability to distinguish between different
kinds of stimuli, can be derived by manipulating participants’
response bias. Specifically, in a recognition memory experiment,
they are encouraged to be more or less liberal in their tendency to
say that they recognize a stimulus. Based on these judgments, one
can plot for each level of response bias a point that corresponds to
the resulting hit rate and false alarm rate. The problem with
standard implementations of discrete-state models is that they
yield linear ROC curves. The curves participants generally pro-
duce, however, are curvilinear and are consistent with the more
widely accepted signal detection theory (SDT) view of recogni-
tion, in which memory judgments are based on continuous
information.

Does this property of high-threshold models by extension dis-
qualify the Anderson et al. (1998) recognition model? In fact, their
model does not produce ROC curves of any sort, simply because
no mechanisms were specified to handle changes in response bias
or to generate confidence ratings (which can also be used to
generate ROC curves). Though straightforward modifications,
such as varying the propensity of the model to respond so that it
recognizes items, will not yield curvilinear ROC curves, one ought
not jump to the conclusion that the Anderson et al. model cannot
produce appropriate ROC curves. Malmberg (2002) demonstrated
that whether a high-threshold model produces linear or curvilinear

Figure 3. Activation distributions for the city name records that result from being mentioned in the front-page
headlines of the New York Times headlines. The points correspond to the expected value of the distribution. The
number at the center of each distribution shows the proportion of the distribution that lies to the right of the
retrieval criterion $ (which to be consistent with subsequent simulations is set to 1.44). This proportion is the
probability that the system will be able to retrieve the record and thereby recognize the city.
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ROC curves depends critically on the assumptions made about the
mechanisms that produce the confidence ratings. So though
ACT-R belongs to the class of high-threshold models, its retrieved
memory records rest on a continuous memory variable (i.e., acti-
vation). This variable, in turn, could be used to construct (curvi-
linear) ROC curves on the basis of confidence ratings.

To conclude, Anderson et al. (1998) did not consider basic ROC
curves. Yet, the model has accounted quite successfully for many
recognition memory effects, including the vexing list-strength
effect (Ratcliff, Shiffrin, & Clark, 1990), which could not be
handled by the mathematical models existing at the time. In
addition, the same basic mechanisms have been applied to dozens
of empirical results in a wide range of domains. All in all, we
believe we are on solid theoretical ground by drawing on the
Anderson et al. ACT-R account of recognition for modeling the
recognition and the fluency heuristic. In the General Discussion
section, we return to the distinction of binary versus continuous
notions of recognition and consider a model that adopts a signal-
detection view of recognition.

Simulations of the Recognition and Fluency Heuristics

Figure 1 illustrates the basic steps in our simulations that applied
our ACT-R models of the recognition and fluency heuristics to the
city population comparison task. First, we constructed environ-
ments that consisted of the names of German cities and the days on
which they were encountered. Second, the model learned about
each city from the constructed environments by strengthening

memory records associated with each city according to Equation 3,
ACT-R’s base-level activation equation. Third, we determined the
model’s recognition rates by fitting Equation 4, the probability of
retrieving a record given its activation, to the rates at which the
Goldstein and Gigerenzer (2002) participants recognized the cities.
Fourth, these recognition rates were used to drive the performance
of the recognition and fluency heuristics on the city population
comparison task. We now describe these simulations in detail.

How the City Environments Were Constructed

In the simulations, the probability of encountering a German
city name on a given day was proportional to its relative frequency
in the Chicago Tribune. The frequencies were taken from the
Goldstein and Gigerenzer (2002) counts of how often the 83
largest German cities were mentioned between January 1, 1985,
and July 31, 1997. Thus, the probability of encountering city i on
any given day was:

P%i& "
fi

w
, (6)

where fi is the total number of citations for the ith city, and w is the
total number days in the sample (the historical window). For
example, Berlin, the largest city, was mentioned 3,484 times in the
4,747-day sample, so its daily encounter probability was .73.
Duisburg, the 12th largest city, was mentioned 53 times, yielding

Figure 4. An exponential function relates a record’s activation to its retrieval time. The open circle represents
the retrieval time associated with $, the retrieval criterion. Points to the left of $ are associated with low activation
levels that result in retrieval failure.
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a probability of .011. Based on these encounter probabilities, a
historical environment was created for each city that consisted of
a vector of 1s and 0s, where a 1 indicated that the city’s name had
been encountered on a particular day and 0 indicated that it had
not. Because the size of the historical window is arbitrary, we set
it to 4,747, the total number of days in the Goldstein and Giger-
enzer analysis.

For this set of simulations, the probability of encountering a city
on any given day was fixed according to Equation 6. That is, the
probability of encountering a city was independent of when it was
last encountered, though, of course, cities with higher probabilities
would tend to have shorter lags between encounters than would
less frequent cities. Later we report simulations that used environ-
ments with a more refined statistical structure, which led to com-
parable conclusions.

How the Activations for the Cities’ Records Were
Learned

As in the example illustrated in Figures 2 and 3, each city had
an associated memory record that was strengthened according to
Equation 3. When the end of each time window was reached,
activation values for each city were calculated by averaging its
activation across 500 constructed environments. The subsequent
simulations are based on these average activation values. As one
interprets the simulation results, however, it may be helpful to
keep in mind Anderson’s (1993) approximation to Equation 3:

B " k # ln n % d ln T, (7)

where k is a constant, n is the number of times the item associated
with the record has been encountered, and T is how long it has
been since the record was first created. Taking the natural log
compresses larger numbers more than smaller ones. Thus, because
of this compression, each successive encounter with an item con-
tributes less than the preceding encounter to the total activation.
Similarly, activation decays quickly at first and more slowly there-
after, because each subsequent “tick” of the clock is compressed,
and so subtracts less and less from the total activation.

Does Activation Capture the Correlation Between
Environmental Frequency and the Criterion?

For the recognition and fluency heuristics to be useful inference
strategies, activation needs to reflect the relation between objects’
frequencies in the environment and their values on the criterion.
Given that the ecological correlation between the raw citation
counts and the city population size (r # .82) is high, judgments of
city size based on citation counts can reasonably be taken as an
upper bound on inferential performance. Indeed, inferences about
which of two cities is larger based on these counts (where a higher
count implies a larger city) are accurate in 76.5% of city compar-
isons. In comparison, inferences based on a city’s average activa-
tion (where a higher activation implies a larger city) have an
accuracy of 76.4%, just .1 percentage point below those based on
the raw frequency information. Thus, activation seems to closely
track the cities’ environmental frequencies. With these bounds on
accuracy in mind, we now examine the performance of the recog-
nition and fluency heuristics.

An ACT-R Model of the Recognition Heuristic

The performance of the recognition and fluency heuristics de-
pends on the cities’ recognition rates. In line with Anderson et al.
(1998) a city was recognized when the record associated with the
city could be retrieved. A city’s recognition rate was estimated by
fitting Equation 4, which relates a record’s activation to its prob-
ability of retrieval, to the empirical recognition rates that Goldstein
and Gigerenzer (2002) observed. Equation 4’s two free parameters
were estimated using the nonlinear regression function from SPSS
11.0. These are $, the retrieval criterion (estimated to be 1.44 units
of activation), and s, the activation noise (estimated to be .728).
The correlation between the estimated and empirical recognition
rates was high (r # .91). Figure 5 plots recognition as a function
of activation. The points represent the empirical recognition rates,
and the S-shaped curve shows the estimated recognition rates
based on ACT-R’s retrieval mechanisms (Equation 4).

To see how the Chicago students would be expected to do on the
city comparison task, if they were to employ the recognition
heuristic, we calculated the recognition heuristic’s performance
based on the empirical recognition rates recorded by Goldstein and
Gigerenzer (2002). That is, if only one city was recognized, that
city was chosen; otherwise, a guess was made. Performance of the
recognition heuristic based on the empirical and model’s recogni-
tion rates on all possible city pairs was .606 and .613, respectively.
This indicates good agreement between the behavior of the ACT-R
model of the recognition heuristic and that expected from the
students.

Based on this correspondence, we can now pose novel questions
concerning whether the recognition and fluency heuristics benefit
from loss of information in memory.

Does Forgetting Benefit the Recognition Heuristic?

To address this question, we varied the decay rate d (holding
both the retrieval criterion, $, and the activation noise, s, constant)
and observed how the resulting changes in recognition affect
inferences in the city population task.5 The upper bound of the
decay rate, 0, means no forgetting, the strength of a memory record
is strictly a function of its frequency. Negative values of d imply
forgetting, and more negative values imply more rapid forgetting.
Using a step size of .01, we tested d values ranging from 0 to '1,
the latter being twice the ACT-R default decay rate. In Figure 6,
the solid line shows the recognition heuristic’s average perfor-
mance on pairwise comparisons of all German cities with more
than 100,000 residents, including pairs in which it had to guess
because both cities are recognized or unrecognized. Three aspects
of this function are noteworthy. First, the recognition heuristic’s
performance assuming no forgetting (56% correct) is substantially
worse than its performance assuming the “optimal” amount of
forgetting (63.3% correct). Second, ACT-R’s default decay value
of –.50 yields 61.3% correct, only slightly below the peak perfor-
mance level, which is reached at a decay rate of –.34. Third, the

5 Alternatively, since $ and d trade off, we could have kept d constant
and varied $, but here we do not undertake an extensive analysis of the
effect of this parameter on performance. In the General Discussion section,
however, we do consider a model in which $ is set so low that all records
can be retrieved.
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sensitivity curve has a flat maximum, with all decay values from
–.13 to –.56 yielding performance in excess of 60% correct.

In other words, forgetting enhances the performance of the
recognition heuristic, and the amount of forgetting can vary over a
substantial range without compromising the heuristic’s good per-
formance. If there is too much forgetting (resulting in a situation in
which most cities are unrecognized), however, the performance of
the recognition heuristic eventually approaches chance level.

How Does Forgetting Help the Recognition Heuristic’s
Performance?

Two quantities shed more light on the link between forgetting
and the recognition heuristic. The first is the proportion of com-
parisons in which the recognition rule can be used as the basis for
making a choice, that is, the proportion of comparisons in which
only one of the cities is recognized. In Figure 7, the solid line
shows that for the recognition rule this application rate peaks
when d equals '.28, an intermediate level of forgetting. The
second quantity is the proportion of correct inferences made by the
recognition heuristic in those choices to which it is applicable. As
shown in Figure 8, this recognition validity generally increases
with the amount of forgetting, peaking when d equals '1. The
performance (see Figure 6) and application rate (see Figure 7) peak
at nearly the same forgetting rates of '.34 and '.28, compared to
the peak of '1 for the validity curve (see Figure 8). So the decay
rate of '.34 can be thought of as the optimal trade-off between the

effects of forgetting on application rate and validity, with the
application rate having the greater sway over performance. Thus,
intermediate amounts of forgetting increase the performance of the
recognition heuristic by sharply increasing its applicability and, to
a lesser extent, by increasing its validity.

The results of the ACT-R simulations of the recognition heu-
ristic suggest that forgetting serves to maintain the memory sys-
tem’s partial ignorance, a precondition for the heuristic’s function-
ing. Loss of some information—a loss that is not random but a
function of a record’s environmental history—fosters the perfor-
mance of the recognition heuristic. But how robust is this result
and is it limited to the recognition heuristic that takes recognition
to be all-or-one? To find out whether the phenomenon generalizes
to memory-based inference strategies that make finer distinctions
than that between recognition and nonrecognition, we now turn to
the fluency heuristic.

An ACT-R Model of the Fluency Heuristic

The recognition heuristic exploits the correlation between rec-
ognizing an object and its environmental frequency, but when both
objects are recognized this correlation is of no use. Yet, recognized
objects could differ in their activation levels, indicating a differ-
ence in frequency. Although these activation differences cannot be
assessed directly, Equation 5 raises the possibility that retrieval
time, because of its one-to-one mapping with activation, could be
used as a proxy for activation. To see how this might be accom-

Figure 5. Recognition rate plotted as a function of activation. The points indicate the observed recognition
rates of the 83 German cities. The S-shaped curve relates the activation of a city’s record to its estimated
recognition rate. For instance, Bremen has an observed recognition rate of .45, an activation of 1.39, and an
estimated recognition rate of .48. Stuttgart has an observed recognition rate of .64, an activation of 2.89, and an
estimated recognition rate of .88.
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plished, let us assume that people are sensitive to differences in
recognition times (i.e., retrieval times). Specifically, let us suppose
that the University of Chicago students in the Goldstein and
Gigerenzer (2002) studies could tell the difference between instan-
taneously recognizing Berlin, for instance, and taking a moment to
recognize Stuttgart. We suggest that such differences in recogni-
tion time partly reflect retrieval time differences, which, according
to Equation 5, reflect the base-level activations of the correspond-
ing memory records.

Moreover, retrieval time allows us to make the notion of fluency
of reprocessing more precise. Operationalizing fluency as retrieval
time, we now implement the fluency heuristic within the ACT-R
framework. In Table 2, we specify the fluency heuristic for the
two-alternative choice between two cities as a set of three produc-
tion rules that build on the rules constituting the recognition
heuristic presented in Table 1.

The first two rules embody the essential components of the
recognition heuristic: Guess when neither alternative is recog-
nized, and choose the recognized alternative when one is recog-
nized and the other is not. Triggered only when both alternatives
are recognized, the fluency rule sets a goal of comparing retrieval
times. Hereafter we refer to the complete set of rules in Table 2 as
the fluency heuristic and to the third rule of the set specifically as
the fluency rule.

In the interest of psychological plausibility, we built in limits on
the system’s ability to discriminate between retrieval times. Rather
than assuming that the system can discriminate between minute
differences in any two retrieval times, we assume that if the
retrieval times of the two alternatives are less than a just noticeable

difference (JND) apart, then the system must guess. Guided by
Fraisse’s (1984) conclusion, which was based on an extensive
review of the timing literature, that durations of less than 100 ms
are perceived as instantaneous, we set the JND to 100 ms rather
than modeling the comparison of retrieval times in detail. We do
not claim, however, that this value captures people’s actual thresh-
olds exactly.

Comparison of the Fluency and Recognition Heuristics

The fluency heuristic assumes that people compare the retrieval
times for the two objects and choose the object that is more quickly
recognized (the other object may be more slowly recognized or
come up unrecognized). How accurate is this heuristic compared
with the recognition heuristic? Surprisingly, using the default
decay rate of –.50, the fluency heuristic (62.1%) performs only
slightly better than the recognition heuristic (61.3%).

Let us analyze this performance in more detail. Recall that
recognition validity is the probability of getting a correct answer
when one object is recognized and the other is not. The recognition
validity in our simulation was .82. The overall accuracy of the
recognition heuristic is reduced, because the heuristic resorts to
guessing in cases in which both cities are recognized (5.5% of all
comparisons) or both cities are not recognized (58.2% of all
comparisons). Analogous to the recognition validity, fluency va-
lidity (i.e., the validity of the fluency rule) is the probability of
getting a correct answer when both objects are recognized. The
fluency validity is .61, lower than the recognition validity but still

Figure 6. Proportion of correct inferences made by the recognition and fluency heuristics on all comparisons
of the 83 largest cities in Germany. The amount of forgetting in the system was varied from 0, corresponding
to no forgetting, to '1, a high forgetting rate. The peaks of each curve are marked with dots.
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higher than the recognition heuristic’s chance-level performance
when recognition does not discriminate between objects.

From this it follows that the fluency heuristic’s competitive
advantage over the recognition heuristic depends on the relative
frequency of city pairs in which both objects are recognized. It is
only in these comparisons that the performance of the two heuris-
tics can differ; when one object is recognized and the other is not,
the two heuristics behave identically, and when neither object is
recognized, both must guess. This conclusion is illustrated by
comparing the performance of the two heuristics on different
subsamples of cities. For example, if comparisons are restricted to
the 10 largest German cities (resulting mostly in pairs in which
both objects are recognized), the fluency heuristic has about a 5%
performance advantage over the recognition heuristic (63.8% vs.
58.8%). This advantage drops to 3% when the 20 largest cities are
included (66.7% vs. 63.3%) and to less than 1% when all 83 of the
largest cities are included. In short, the fluency heuristic compares
most favorably with the recognition heuristic when the sample is
dominated by large cities that tend to be easily recognized.

Does Forgetting Benefit the Fluency Heuristic?

Loss of information bolsters the performance of the recognition
heuristic, but does it give a boost to the fluency heuristic as well?
Indeed, the dashed line in Figure 6 shows that performance of the
fluency heuristic peaks at a decay rate of –.25. How can it be that
the fluency heuristic’s performance peaks at intermediate levels of

forgetting—a heuristic that feeds on recognition knowledge and
not lack thereof (as the recognition heuristic does)? Is it possible
that the peak in performance at intermediate levels of forgetting
stems solely from the recognition rule within the fluency heuristic?

To investigate whether the fluency rule enjoys any independent
benefit of forgetting, we analyzed the set of city comparisons in
which both cities are recognized (to which the fluency rule applies)
and the proportion of correct inferences that the fluency rule makes
in this set as a function of forgetting. Figure 7 shows that the fluency
rule’s application rate drops as forgetting rises, as one would expect
given that the fluency rule applies only when both cities are
recognized. When it applies, however, the fluency rule indeed
benefits from intermediate levels of forgetting. As Figure 8 dem-
onstrates, the fluency rule’s validity peaks at the intermediate decay
rate of '.42, though this peak is well below that of the recognition
rule’s validity. That is, the peak in the fluency heuristic’s perfor-
mance at intermediate levels of forgetting stems from benefits of
forgetting that cannot be reduced to those for the recognition rule.
But how does the fluency rule benefit from forgetting?

What Causes the Fluency Rule’s Validity to Peak at
Intermediate Decay Rates?

To understand how one important factor contributes to the shape
of the fluency rule’s validity curve, let us revisit the exponential
function that relates activation to latency in Figure 4. Consider first
retrieval times of 200 and 300 ms, which correspond to activations

Figure 7. Application rate of the recognition rule and fluency rule. The application rate for the recognition rule
is the proportion of all comparisons in which only one of the cities is recognized. The application rate for the
fluency rule is the proportion of all comparisons in which both cities are recognized.
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of 1.99 and 1.59, respectively. For these relatively low activations,
only a small difference of .40 units of activation is required to
exceed the 100-ms JND. In contrast, the 100-ms difference in
retrieval time between 50 and 150 ms corresponds to a difference
of 1.1 units of activation. Thus, by shifting the activation range
downward, forgetting helps the system settle on activation levels
corresponding to retrieval times that can be more easily discrim-
inated. In the case of the fluency heuristic, memory decay prevents
the activation of (retrievable) records from becoming saturated.

Less is More—Even for the Fluency Heuristic

Intermediate amounts of forgetting benefit not only the recog-
nition heuristic but the fluency heuristic as well. Generally, the
application and validity rates of the recognition rule and the
validity rate of the fluency rule profit from faster forgetting,
whereas the application rate of the fluency rule pulls strongly
toward slower forgetting. In short, three of the four quantities that
determine the performance of the fluency heuristic peak at faster
decay rates. This observation is akin to the less-is-more effect for
the recognition heuristic (see Figures 2 and 3 in Goldstein &
Gigerenzer, 2002). In the less-is-more context, decision makers
who know less might exhibit greater inferential accuracy than do
those who know more. In the present context, decision makers who
have intermediate rates of memory decay can make more accurate
inferences than those with little or no decay—whether they are
using the recognition heuristic or the fluency heuristic.

Is the Beneficial Effect of Forgetting Robust in
Environments With Natural Clustering?

In the simulations reported thus far, the probability of a city’s
name being mentioned on a particular day was taken to be pro-
portional to its overall citation rate and independent of when the
city’s name was last mentioned. This assumption ignores a poten-
tially important aspect of the environmental structure, namely, that
the occasions on which an item (e.g., a city name) is encountered
tend to cluster temporally. Consider, for instance, the pattern for

Table 2
The Production Set That Implements the Fluency Heuristic

Rule Description

Guessing If the goal is to choose the larger of two cities, City X and
City Y,

and a record with the name City X cannot be retrieved,
and a record with the name City Y cannot be retrieved,
then set a goal to guess.

Recognition If the goal is to choose the larger of two cities, City X and
City Y,

and a record with the name City X can be retrieved,
and a record with the name City Y cannot be retrieved,
then set a goal to respond that City X is the larger city.

Fluency If the goal is to choose the larger of two cities, City X and
City Y,

and a record with the name City X can be retrieved,
and a record with the name City Y can be retrieved,
then set a goal to compare retrieval times, and respond

that the city retrieved fastest is larger.

Figure 8. Validity of the recognition rule and fluency rule. The validity of a rule is the proportion of correct
inferences that the rule makes when it can be applied.
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Chicago in Figure 2. The cluster in early 1987 relates to stories
about the mayoral election. The cluster toward the end of 1987
relates to the mayor dying in office. Even without knowing what
a word means, one can predict well how likely it is to be mentioned
in the future on the basis of how recently and frequently it has been
mentioned in the past. The ACT-R activation equation was de-
signed to be sensitive to just such patterns (Anderson & Schooler,
1991). To find out whether the benefits of forgetting generalize to
a model of the environment that reflects the natural clustering of
events, the models already presented were run again, but this time
on environments that contained natural clustering. This was
achieved by making the probability of encountering a city name
dependent both on how long ago it was last encountered and how
frequently it was encountered in the recent past. These dependen-
cies were modeled on those found by Anderson and Schooler
(1991) in their analysis of word usage in the New York Times
headlines.

Figure 9 shows how the performance of the recognition and the
fluency heuristics depends on the decay rate in this clustered
environment. Although these curves are rough hewn because they
are based on 11 decay values as opposed to the 101 decay values
used to map out the other decay functions, the results are consistent
with those of Figure 6 in which the probability of a word’s being
mentioned on a given day was proportional to its overall environ-
mental frequency (see Equation 5). The similarity between the two
sets of results suggests that learning over extended periods
smoothes out the possible effects of clustering on performance.

General Discussion

Some theorists have argued that forgetting is indispensable to
the proper working of memory. Building on the notion of benefi-
cial forgetting, we have demonstrated that ecologically smart loss
of information—loss that is not random but reflects the environ-
mental history of the memory record—may not only foster mem-
ory retrieval processes but can also boost the performance of
inferential heuristics that exploit mnemonic information such as
recognition and retrieval fluency. We did so by implementing
inferential heuristics within an existing cognitive architecture, thus
enabling us to analyze how parameters of memory such as infor-
mation decay affect inferential accuracy. This analysis also re-
vealed three distinct reasons for why forgetting and heuristics can
work in tandem. In the case of the recognition heuristic, interme-
diate amounts of forgetting maintain the systematic partial igno-
rance on which the heuristic relies and increase somewhat the
heuristic’s validity, the probability that it correctly picks the larger
city. In the case of the fluency heuristic, intermediate amounts of
forgetting boost the heuristic’s performance by maintaining acti-
vation levels corresponding to retrieval latencies that can be more
easily discriminated. In what follows, we (a) discuss the robustness
of the beneficial effects of forgetting, (b) investigate how the
fluency heuristic relates to the availability heuristic, (c) discuss
whether it is worthwhile maintaining the distinction between the
fluency and recognition heuristics, and (d) conclude by examining
whether forgetting plausibly could have evolved to serve heuristic
inference.

Figure 9. Performance of the recognition and fluency heuristics as the amount of forgetting varies, when
activations are based on simulated environments that display more natural clustering of city mentions.
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A Signal-Detection View of Recognition: How Robust Are
the Beneficial Effects of Forgetting?

We see the Goldstein and Gigerenzer (2002) recognition heu-
ristic not so much as a model of recognition, but rather as a model
of how the products of the recognition process could be used to
make decisions. Given that the recognition heuristic starts where
models of recognition leave off, it seems reasonable, for this
purpose, to assume that items are either recognized or they are not,
even if this is a simplification. However, as our interest was in the
impact of forgetting on how the recognition heuristic operates, we
needed to consider the details of the underlying recognition pro-
cess. We adapted the Anderson et al. (1998) ACT-R model of
episodic recognition, which is a high-threshold model that depends
on the all-or-none retrieval of appropriate memory records. By
adding fluency, our model is no longer strictly a high-threshold
model because there is continuous information available for the
retrieved items, though not for those items that failed to be re-
trieved. Models like this were considered by Swets, Tanner, and
Birdsall (1961).

In what follows, we investigate whether our results are robust in
the context of a signal-detection view of recognition memory,
currently the most widely shared view of recognition. In this view,
there is a potential for discriminability even among unrecognized
items. Signal detection theory describes a decision maker who
must choose between two (or more) alternatives—for instance,
whether or not he or she has encountered a present stimulus
previously—on the basis of ambiguous evidence (Green & Swets,
1966). This uncertain evidence is summarized by a random vari-
able that has a different distribution under each of the alternatives
(encountered vs. not encountered). The evidence distributions

overlap, thus some events are consistent with each of the two
alternatives. The decision maker establishes a decision criterion C
that divides the continuous strength of evidence axis into regions
associated with each alternative, for instance, the “recognized”
versus the “unrecognized” region. If the evidence value associated
with an event in question exceeds C, the decision maker will
respond “recognized,” otherwise he or she will respond “unrecog-
nized.” On this view, though people’s decisions are dichotomous
(recognized vs. unrecognized), the underlying recognition memory
and strength-of-evidence axis are not. Moreover, the unrecognized
items are not of one kind but differ in gradation of strength, thus
affording discrimination even if items are not recognized.

In the present ACT-R models of the fluency and recognition
heuristic, the retrieval criterion, $, doubles as a decision criterion
for recognition. This dual role for $ is consistent with how it was
used by Anderson et al. (1998). By decoupling $’s functions, we
can now implement a version of the fluency heuristic that attempts
to distinguish between unrecognized items. Specifically, if the
retrieval criterion is assumed to be lower than the recognition
decision criterion, then the fluency rule will apply to comparisons
in which both objects exceed the modest retrieval criterion but
remain unrecognized. The fluency heuristic can then capitalize on
the fact that one unrecognized name is perhaps more fluently
processed (i.e., has a higher activation value and faster retrieval
time within ACT-R) than the other unrecognized name.

Will the benefits of forgetting generalize to this version of the
fluency heuristic? To answer this question, we reran the simula-
tions of the fluency heuristic but set $ so low that all memory
records would be retrieved. As a result, all decisions were handled
by the fluency rule. Figure 10 shows that forgetting also facilitates

Figure 10. Performance of the fluency heuristic when continuous information is available for all city records.
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the performance of this version of the fluency heuristic. As in the
previous simulations of the fluency heuristic, the reason for the
performance boost is that loss of information lowers the range of
activation to levels corresponding to more discriminable retrieval
times. In other words, a given difference in activation in a lower
part of the range results in a larger, more detectable difference in
retrieval times than does the same-sized difference in a higher part
of the range. Thus, the beneficial effects of forgetting also prove
robust in a signal-detection view of recognition memory.

The Fluency and Availability Heuristics: Old Wine in a
New Bottle?

The fluency heuristic feeds on environmental frequencies of
occurrences that are related to criterion variables such as popula-
tion size. It thus can be seen as another ecologically rational
cognitive strategy belonging to the adaptive toolbox of fast and
frugal heuristics (Gigerenzer et al., 1999). But is it new? Fluency
shares an important property with one of the three major heuristics
investigated in the heuristics-and-biases research program,
namely, availability (Kahneman, Slovic, & Tversky, 1982). Both
the availability heuristic and the fluency heuristic capitalize on a
subjective sense of memory fluency. Tversky and Kahneman
(1973) suggested that people using the availability heuristic assess
the probability and the frequency of events on the basis of the ease
or the frequency with which relevant instances of those events can
be retrieved from memory. Thus, they proposed two notions of
availability (Tversky & Kahneman, 1973, pp. 208, 210), one that
depends on the actual frequencies of instances retrieved and one
that depends on the ease with which the operation of retrieval can
be performed (for more on the distinction between these two
notions of availability, see Hertwig, Pachur, & Kurzenhäuser,
2004; Sedlmeier, Hertwig, & Gigerenzer, 1998).

If one understands availability to mean ease of retrieval, then the
question arises regarding how ease should be measured. Sedlmeier
et al. (1998), for example, proposed measuring ease in terms of
speed of retrieval. Thus interpreted, availability becomes nearly
interchangeable with fluency, although the fluency heuristic re-
trieves the event itself (e.g., the name of a city), whereas the
availability heuristic retrieves instances from the class of events
(e.g., people who died of a heart attack vs. people who died of lung
cancer to estimate which of the two diseases has a higher mortality
rate). We would have no objection to the idea that the fluency
heuristic falls under the broad rubric of availability. In fact, we
believe that our implementation of the fluency heuristic offers a
definition of availability that interprets the heuristic as an ecolog-
ically rational strategy by rooting fluency in the informational
structure of the environment. This precise formulation transcends
the criticism that availability has been only vaguely sketched (e.g.,
Fiedler, 1983; Gigerenzer & Goldstein, 1996; Lopes & Oden,
1991). In the end, how one labels the heuristic that we have called
fluency is immaterial because, as Hintzman (1990) observed, “the
explanatory burden is carried by the nature of the proposed mech-
anisms and their interactions, not by what they are called” (p. 121).

The Fluency and Recognition Heuristics: Are They the
Same Thing?

Heuristics, at their core, are models of cognitive processes. So,
asking whether the fluency and recognition heuristics are the same

thing amounts to asking whether they process information identi-
cally. In terms of our ACT-R implementation, the answer to this
question is no. The recognition rule, once its conditions are
matched, can proceed immediately to a decision. The fluency rule,
in contrast, entails the additional steps required to compare the
retrieval times for the respective objects. Having two distinct rules
improves the overall efficiency of the system because information
is processed only as much as is necessary to make a decision. But
there is a second reason, independent of our implementation for
keeping the heuristics separate. By assuming two heuristics, we
can investigate situations in which one heuristic may be more
applicable and effective than the other. For instance, the recogni-
tion heuristic may be more robust in the face of time pressure.
When there is not enough time for distinctions in degrees of
recognition, or for comparisons thereof, coarser information such
as whether items are recognized may do the job. But even when
people do have enough time to evaluate familiarity (or fluency),
there may be factors that affect their sense of fluency but are less
strongly related, unrelated, or even negatively related to recogni-
tion. For example, priming may be more likely to disrupt fluency
assessments than recognition judgments. Moreover, if people had
insight into the relative accuracy of recognition and fluency in a
particular context, they might be able to select one heuristic over
the other. By assuming two rather than one heuristic we retain the
degrees of freedom to identify and model such situations.

What Came First: The Forgetting or the Heuristics?

One interpretation of the beneficial effect of forgetting as iden-
tified here is that the memory system loses information at the rate
that it does in order to boost the performance of the recognition
and fluency heuristics and perhaps other heuristics. On this view,
an optimal amount of forgetting has evolved in the cognitive
architecture in the service of memory-based inference heuristics.
Though such a causal link may be possible in theory, we doubt that
evolving inferential heuristics gave rise to a degree of forgetting
that optimized their performance. The reason is that memory has
evolved in the service of multiple goals. It is therefore problematic
to argue that specific properties of human memory—for instance,
forgetting and limited short-term memory capacity—have opti-
mally evolved in the service of a single function. Although such
arguments are seductive—for an example, see Kareev’s (2000)
thesis that limits on working memory capacity have evolved “so as
to protect organisms from missing strong correlations and to help
them handle the daunting tasks of induction” (p. 401)—they often
lack a rationale for assuming that the function in question has
priority over others.

On what anchors can one say that, for example, induction, object
recognition, correlation detection, classification, or heuristic infer-
ence is the most important cognitive function? In the absence of an
analysis that supports a principled ranking of these functions or a
convincing argument as to why forgetting would have evolved in
the service of one single function (and then later may have been
co-opted by others), we hesitate to argue that memory loses infor-
mation at the rate that it does in order to boost the performance of
heuristics. We find it more plausible that the recognition heuristic,
the fluency heuristic, and perhaps other heuristics have arisen over
phylogenetic or ontogenetic time to exploit the existing forgetting
dynamics of memory. If this were true, a different set of properties
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of memory (e.g., faster or slower forgetting rate) could have given
rise to a different suite of heuristics.

Future Steps

By linking two research programs—the program on fast and
frugal heuristics and the ACT-R research program—we were able
to ground inference heuristics that exploit mnemonic information
in a cognitive architecture. We believe that this synthesis opens
potential avenues of research that go beyond those reported here.
By implementing other heuristics, one could, for instance, inves-
tigate to what extent the benefits of forgetting may generalize to
other heuristics, such as take-the-best, that rely on complexes of
declarative knowledge (e.g., Munich, Germany, has a professional
soccer team). In addition, such implementations may point toward
other heuristics that have yet to be discovered.

We also believe that implementing heuristics within a cognitive
architecture facilitates the investigation of questions that have been
notoriously difficult to tackle within research on heuristics—issues
such as how different heuristics are selected and how they are
acquired. For example, Rieskamp and Otto (2005) have shown that
associative learning mechanisms can capture how participants
select between heuristics in ways that are adaptive for particular
environments. Nellen (2003) found that associative learning mech-
anisms used in ACT-R can achieve an adaptive match between
heuristics and environment structure as well. These investigations,
however, presupposed the existence of a set of heuristics to select
from. Stepping back even further, one may ask what are the
“building blocks” of the fast and frugal heuristics, and what are the
rules, the constraints, that govern the composition of the building
blocks into new heuristics. Little progress, if any, has been made
on this issue of the acquisition of heuristics. We believe that one
promising place to look for building blocks and constraints on their
composition is in the basic mechanisms of ACT-R. Building
heuristics on an ACT-R foundation ensures, at the very least, that
they are cognitively plausible. In addition, constructing heuristics
in this way will enrich the understanding of the relation between
the heuristics in the adaptive toolbox (see Gigerenzer et al., 1999)
and their basic cognitive foundations.

Conclusion

Analyses of cognitive limits, a well-studied topic in psychology,
are usually underpinned by the assumption that cognitive limits,
such as forgetting, pose a serious liability (see Hertwig & Todd,
2003). In contrast, we demonstrated that forgetting might facilitate
human inference performance by strengthening the chain of cor-
relations, linking the target criteria, environmental frequencies,
and fundamental memory-retrieval processes. The recognition and
fluency heuristics, we argued, use the response characteristics of
these basic memory processes as a means to indirectly tap the
environmental frequency information locked in the activations. In
light of the growing collection of beneficial effects ascribed to
cognitive limits (see Hertwig & Todd, 2003), we believe it timely
to reconsider their often exclusively negative status and to inves-
tigate which limits may have evolved to foster which cognitive
processes and which processes may have evolved to exploit spe-
cific limits—as we propose in the case of heuristic inference and
forgetting.
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