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Introduction: Selective pressures on cognitive mechanisms 

 
Traditional cognitive psychology, the study of the information processing mechanisms 
underlying human thought and behavior, is problematic from an evolutionary viewpoint: 
Humans were not directly selected to process information, nor to store it, learn it, attend 
to it, represent it—nor even, in fact, to think.  All of these capacities, the core topics of 
cognitive psychology, can be seen as epiphenomena arising over the course of evolution 
from the need to get the central jobs done: survival and reproduction.  Moreover, while 
the subtasks of those two main goals—finding food, maintaining body temperature, 
selecting a mate, negotiating status hierarchies, forming cooperative alliances, fending off 
predators and conspecific competitors, raising offspring, etc.—surely relied on gathering 
and processing information, meeting the challenges of each of these domains would only 
have been possible by in each case gathering specific pieces of information and 
processing it in particular ways.  This suggests that to best study the faculties of memory, 
or attention, or reasoning, we should take a task- and domain-specific approach that 
focuses on the use of each faculty for a particular evolved function, just the approach 
exemplified by the other chapters in this handbook. 
 
But there is another tack that a traditional faculty-oriented cognitive psychologist can 
take when facing our domain-oriented mind.  In addition to the selective pressures 
shaping domain-specific mechanisms, there are also a number of important selective 
forces operating across domains more widely, such as those arising from the costs of 
decision time and information search.  Much as our separate physiological systems have 
all been shaped by a common force for energy-processing efficiency, individual 
psychological information-processing systems may all have been shaped by various 
common pressures for information-processing efficiencies.  These broad pressures can in 
turn lead to common design features in many cognitive systems, such as decision 
mechanisms that make choices quickly based on little information.  As a consequence, 
cognitive psychologists studying mental mechanisms from a domain-agnostic perspective 
can benefit from and contribute to an evolutionary perspective that takes into account 
both domain-specific as well as broad selective pressures.  
 
In this chapter, we show how a set of broad forces operating on multiple domains can 
impact on the design of specific cognitive systems.  In particular, we first discuss how the 
costs of gathering information, and of using too much information, can be reduced by 
decision mechanisms that rely on as little information as possible—or even a lack of 
information—to come to their choices.  Next, we explore how the pressures to use small 
amounts of appropriate information may have produced particular patterns of forgetting 
in long-term memory and particular limits of capacity in short-term memory.  Finally, we 
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show how selection for being able to think about past sets of events has given us 
reasoning mechanisms best able to handle information represented as samples or 
frequencies of experience, rather than as probabilities. 
 
Throughout the chapter, we focus on three topics of central interest to cognitive 
psychologists—decision making, memory, and representations of information.  But at the 
same time, we also lay out three main theses that will be less familiar to those taking a 
traditional view of cognition as computation unfettered by external, environmental 
considerations.  These theses are that simple decision mechanisms can work well by 
fitting environmental constraints; limited memory systems can have adaptive benefits; 
and experience-based representations of information can enhance decision-making.  In 
more detail, we first illustrate how considering broad selective pressures arising from the 
constraints of information-gathering in the external world can help us to uncover some of 
the classes of decision mechanisms that people use.  Second, in the context of memory 
systems shaped by such selective pressures, we demonstrate that an evolutionary 
perspective stressing both benefits and costs of particular abilities can lead to an 
appreciation of the positive functional roles of cognitive limitations.  And third, we argue 
that taking into account the selective forces exerted by our patterns of interaction with the 
environment can help explain why different representations of the same information can 
interact with our evolved machinery to produce widely varying responses.  In this way, 
while we ignore many of the topics typically covered in cognitive psychology, we aim to 
sketch out some existing questions that we think an evolution-savvy cognitive 
psychology should explore.  (For other views of evolutionary cognitive psychology, and 
consideration of further issues such as individual differences, see Kenrick, Sadalla, & 
Keefe, 1998.) 
 
 

Decision making: Putting information to use 
 
We begin by considering decision mechanisms, which process perceived and stored 
information into choices leading to action.  Cognitive psychology texts typically begin 
with perceptual and attentional processes and then work their way through the mind 
finally to decision making and reasoning.  To the extent that perceptual systems have to 
provide information to a variety of domain-specific mechanisms “downstream,” they 
have been shaped through the intersection of multiple selective forces to operate 
adaptively in a domain-general manner.  Vision is the prime example, where the demands 
of collecting information for foraging mechanisms, mate-selection mechanisms, 
navigation mechanisms and the like have melded together to select for a visual system 
that meets general design criteria such as the ability to detect motion and recognize 
objects in widely-varying lighting conditions.  On the other hand, because decision 
processes stand close to ultimate expressed behavior, they are also close to the particular 
functionally-organized selective forces operating on behavior.  Thus decision 
mechanisms may have been strongly affected by individual selective forces to become 
domain-specific.  Nonetheless, there are also broad selection pressures operating across 
domains that, we propose, have shaped a wide range of decision mechanisms in common 
directions. 
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What selective pressures impact on decision mechanisms?  Foremost, of course, is 
selection for making an appropriate decision in the given domain.  This domain-specific 
pressure does not imply the need to make the best possible decision, but rather one that is 
good enough (a satisficing choice, as Herbert Simon, 1955, put it), and on average better 
than those of one’s competitors, given the costs and benefits involved.  Good decisions 
depend on good information, and the specific requirements of the functional problem 
along with the specific structure of the relevant environment will determine what 
information is most useful (e.g., valid for making adaptive choices) and most readily 
obtained.  Analyses of the problem and environment structure for particular domains 
indicate for instance that cues of facial symmetry are relevant and easy to assess for 
making inferences about mate quality (see Sugiyama, this volume), and that features 
indicating the presence of refuge and prospect (lookout) locations underlie good 
decisions about habitat choice (see Silverman & Choi, this volume). 
 
But along with the obvious benefits of gathering information for making decisions come 
costs, and attendant selection pressures (Todd, 2001), which cognitive psychologists 
studying the adaptive nature of inference should carefully attend to as well.  First, there is 
the cost of obtaining the information itself.  This cost may be paid in temporal or 
energetic terms: Searching for information can take time that could be better spent on 
other activities, and can involve expending other resources (exertion in scouting out a 
landscape, exchange of goods to find out about a potential social partner).  Furthermore, 
such costs can arise in both external information search in the environment, and internal 
search in memory (Bröder & Schiffer, 2003). 
 
Second, even if information were free and immediately accessible, there is the cost of 
actually making worse decisions if too much information is taken into consideration.  
Because we never face exactly the same situation twice, we must generalize from our 
past experience to new situations.  But because of the uncertain nature of the world, some 
of the features of earlier situations will just be noise, unconnected to the new decision 
outcome (did interviewing with red underwear on really get me that job offer?).  If we 
consider too much information, then, we are likely to add noise to our decision process, 
and overfit when generalizing to new circumstances—that is, make worse decisions than 
if less information had been considered (Martignon & Hoffrage, 2002).1 
 
Given these seemingly opposing selective pressures, to make good choices but to do so 
using little information, what kind of decision mechanisms could possibly be built by 
evolution?  As it turns out, there is little need for a tradeoff between these costs and 
benefits—many environments are structured such that little information suffices to make 
                                                 
1 Note that in some situations these potential costs of using too much information may be outweighed by 
the benefits that seeking extra information can occasionally bring, either directly in decision-making terms 
as considered for instance in Error Management Theory—see Haselton and Nettle, this volume, or 
indirectly in social terms such as being able to justify one’s diligence to bosses or clients.  Nonetheless, 
while humans may act as information-hungry “informavores” in some domains (Pirolli & Card, 1999), 
analyzing the costs and benefits incurred by information seeking should guide us in exploring the cognitive 
mechanisms used in each case. 
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appropriate choices, and decision mechanisms that operate in a “fast and frugal” manner 
can outperform those that seek to process all available information (Gigerenzer, Todd, 
and the ABC Research Group, 1999; Payne, Bettman, & Johnson, 1993).  We now briefly 
survey some of the types of decision heuristics people use that flourish at the intersection 
of these selective forces.  Together, these heuristics form part of the adaptive toolbox of 
cognitive mechanisms that humans draw on to make adaptive choices in the 
environments we face (Todd, 2000). 
 
 
Decision making using recognition and ignorance 
 
Minimal information use can come about by basing decisions on a lack of knowledge, 
capitalizing on one’s own ignorance as a reflection of the structure of the environment.  If 
there is a choice between multiple alternatives along some criterion, such as which of a 
set of fruits is good to eat, and if only one of the alternatives is recognized and the others 
are unknown, then an individual can employ the recognition heuristic to guide decision 
making: choose the recognized option over the unrecognized ones (Goldstein & 
Gigerenzer, 1999, 2002).  Following this simple heuristic will be adaptive, yielding good 
choices more often than would random choice, only in particular types of 
environments—specifically, those in which exposure to different possibilities is 
positively correlated with their ranking along the decision criterion being used.  Thus, in 
our food choice example, the recognition heuristic will be beneficial because those things 
that we do not recognize in our environment are more often than not inedible; humans 
have done a reasonable job of discovering and incorporating edible fruits into our diet.  
(See Galef, 1987, for a similar rule used by Norway rats.)  People successfully use the 
recognition heuristic in a variety of domains where the bigger, better, or stronger 
instances are discussed more, and hence more widely known and recognized, than the 
smaller, worse, weaker ones.  Examples include large cities, important or rich individuals 
and social groups, and winning sports teams (Goldstein & Gigerenzer, 2002).  Note that 
the recognition heuristic, as all heuristics, does not guarantee a correct choice.  In 
appropriately structured environments, its use will on average be beneficial and lead to 
good decisions without having to seek any further information.  But in situations where 
the cost of mistakes is high—for instance, environments where some fruits are known 
because of their extreme toxicity rather than their deliciousness—decisions should be 
based on more than recognition alone (Bullock & Todd, 1999). 
 
 
Decision making using a single reason 
 
When the options to be selected among are all known, the recognition heuristic can no 
longer be applied, and further cues must inform one’s choice.  The traditional approach to 
rational decision making stipulates that all of the available information should be 
collected, weighted properly, and combined before choosing.  A more frugal approach is 
to use a stopping rule that terminates the search for information as soon as enough has 
been gathered to make a decision.  In the most parsimonious version, “one-reason 
decision making” heuristics (Gigerenzer & Goldstein, 1996, 1999) stop looking for cues 
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as soon as the first one is found that differentiates between the options being considered.  
In this case, information processing follows a simple loop: (1) select a cue dimension and 
look for the corresponding cue values of each option; (2) compare the options on their 
values for that cue dimension; (3) if they differ, then stop and choose the option with the 
cue value indicating a greater value on the choice criterion; (4) if they do not differ, then 
return to the beginning of this loop (step 1) to look for another cue dimension. 
 
This four-step loop incorporates two of the important building blocks of simple 
heuristics: a stopping rule (here, stopping after a single cue is found that enables a choice 
between the options) and a decision rule (here, deciding on the option to which the one 
cue points).  To fully specify a particular heuristic, we must also determine the order in 
which cue dimensions are “looked for” in step 1—the information search building block.  
Among the many possible one-reason decision heuristics, Take The Best searches for 
cues in the order of their ecological validity—which reflects their correlation with the 
decision criterion.  Take The Last looks for cues in the order determined by their past 
decisiveness, so that the cue that was used for the most recent previous decision is 
checked first during the next decision.  The Minimalist heuristic lacks both memory and 
knowledge of cue validities and simply selects randomly among those cues currently 
available (the only knowledge it uses is the direction of the cues, that is, whether objects 
with higher cue values tend to have higher or lower criterion values, which is also used 
by the previous two heuristics). 
 
Though they use just one piece of information to make decisions, these simple heuristics 
can nonetheless be surprisingly accurate.  Take The Best for instance performed better on 
average than multiple regression, which combined all available information weighted in 
an optimal manner, when generalizing to new portions of 20 different real-world 
environments (Czerlinski, Gigerenzer, & Goldstein, 1999).  Furthermore, Take The Best 
looked up on average just a third of the available cues before finding the one 
discriminating cue it used to make its decision.  Thus, heuristics employing this type of 
one-reason decision making can successfully meet the selective demands of accuracy and 
little information use simultaneously.  They do so by matching and exploiting the 
structure of information in the environment (for instance, Take The Best capitalizes on a 
non-compensatory, or roughly exponentially decreasing, distribution of the importance of 
cues), using the world to do some of the work and thereby staying simpler and more 
robust (resistant to overfitting) themselves.  A similar analysis within the world of linear 
models was undertaken by Dawes and Corrigan (1974), who pointed out that simplicity 
and robustness appear there too as two sides of the same coin: simply ignoring much of 
the available information means ignoring much irrelevant information, which can 
consequently increase the robustness of decisions when generalizing to new situations.2 
 
                                                 
2 More recently, Chater (1999; Chater & Vitányi, 2003) has proposed that minds are themselves designed 
to seek the simplest possible explanation of the environmental structure they encounter.  This quest for 
simplicity seems to be another general principle that applies across multiple cognitive domains; Chater and 
others (listed in Chater & Vitányi, 2003) have shown its relevance to understanding perception, language 
processing, and higher-level cognition.  The implications of this important idea for an evolutionary 
approach to cognitive psychology still need to be worked out. 
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People use these fast and frugal algorithms in environments that have the appropriate 
structure (Rieskamp & Otto, in preparation), and where information is costly or time-
consuming to acquire (Rieskamp & Hoffrage, 1999; Bröder, 2000; Newell & Shanks, 
2003).  Socially and culturally influenced decision making can also be based on a single 
reason through imitation (e.g. in food choice— Ariely & Levav, 2000), norm following, 
and employing protected values (e.g., moral codes that admit no compromise, such as 
never taking an action that results in human death—see Tanner & Medin, in press).  And 
when a single cue does not suffice to determine a unique choice, people still often strive 
to use as little information as possible, for instance via an elimination heuristic (Tversky, 
1972): Only as many successive cues are considered, each being used to eliminate more 
and more alternatives, as are necessary to reduce the set of remaining possibilities 
ultimately to a single viable option.  For example, if one were to use an elimination 
process to decide on a place to live from among a set of possible habitats, one could first 
eliminate all those that are too far from water, then all those remaining that are too high, 
then those that are too cold in winter, and so on until one acceptable site is left.  Such a 
procedure, while using more than one cue, still is able to produce good decisions very 
quickly (Payne, Bettman, & Johnson, 1993), and can be applied to other types of 
inference such as categorization (Berretty, Todd, & Martignon, 1999).  
 
 
Choosing from a sequence of options 
 
When choice options are not available simultaneously, but rather appear sequentially over 
an extended period or spatial region, a different type of decision mechanism is needed.  
Here in addition to limiting information sought about each alternative, there must be a 
stopping rule for ending the search for alternatives themselves.  For instance, mate search 
requires making a selection from a stream of potential candidates met at different points 
in time.  Classic economic search theory suggests that one should look for a new mate (or 
anything) until the costs of further search outweigh the benefits that could be gained by 
leaving the current candidate. But in practice, performing a rational cost-benefit analysis 
is typically difficult and expensive in terms of the information needed (as well as making 
a bad impression on a would-be partner). Instead, a satisficing heuristic, as conceived by 
Simon (1955, 1990), can be adaptive: Set an aspiration level for the selection criterion 
being used, and search for alternatives until one is found that exceeds that level.  (See 
Hey, 1981, 1982, for other simple and quick heuristic approaches to sequential search.) 
 
But how should the aspiration level be set?  In situations where options that are passed by 
at one point cannot be returned to again later (which is often roughly the case in mate 
search), an effective approach is to sample the first few options that are encountered 
without selecting any of them, and use the highest value seen in that sample as the 
aspiration level for further search.  This cutoff rule can perform very well in terms of 
maximizing the mean value of the option ultimately chosen, even with small initial 
samples (Dudey & Todd, 2002), and people have been shown to use it in experimental 
settings (Seale & Rapoport, 1997).  However, this strategy ignores the problem that a 
prospect you desire may reject you—the mutual choice constraint underlying game-
theory models of two-sided matching (Roth & Sotomayor, 1990).  One way to take 
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mutual choice into account in the mate search context is to set one’s aspiration level near 
one’s own anticipated or estimated mate value, and hence direct courtship effort at those 
prospects similar in mate value and so more likely to reciprocate.  Simple learning rules 
that adjust one’s aspiration level up with every sign of serious interest from potential 
partners and down with every rejection can quickly lead to well-calibrated aspirations of 
this sort that result in realistic patterns of assortative mate choice (Miller & Todd, 1998; 
Todd & Miller, 1999; Simão & Todd, 2003).  While the non-specific pressure to find a 
mate or other sequentially-available resource without too much search can make the 
general class of satisficing aspiration-level mechanisms advantageous, the details of the 
particular search domain (such as whether sequences of options may rise or fall in quality 
over time) may further select for particular types of search rules (such as rules with later 
or earlier stopping thresholds). 
 
 
Ecological rationality and evolved decision mechanisms 
 
The heuristics described above, by ignoring much of the available information and 
processing what they do consider in simple ways, typically do not meet the standards of 
classical rationality, such as full information use and complete combination of 
probabilities and utilities.  Furthermore, heuristic algorithms may produce outcomes that 
do not always follow rules of logical consistency. For instance, Take The Best can 
systematically produce intransitivities among sets of three or more choices (Gigerenzer & 
Goldstein, 1996).  However, when used in appropriately-structured environments, 
whether ancestral or current, these mechanisms can be ecologically rational, meeting the 
selective demands of making adaptive choices (on average) with limited information and 
time. 
 
Ecological rationality implies a two-way relationship between simple heuristics and their 
environments (Todd, Fiddick, & Krauss, 2000).  First, the success of simple heuristics is 
defined with respect to pragmatic goals in a particular environmental context.  Second, 
the success of simple heuristics is enabled by their fit to environmental structure 
(Hertwig, Hoffrage, & Martignon, 1999; Martignon & Hoffrage, 2002).  This marriage of 
structure and simplicity explains and predicts the counterintuitive situations in which 
there is no tradeoff between being fast and frugal and being successful. 
 
Furthermore, different environment structures can be exploited by—and hence call for—
different heuristics.  But matching heuristics to environment structure does not mean that 
every new environment or problem demands a new heuristic: The simplicity of these 
mechanisms implies that they can often be used in multiple, similarly-structured domains 
with just a change in the information they employ (Czerlinski, Gigerenzer, & Goldstein, 
1999).  Thus an evolution-oriented cognitive psychologist should explore both the range 
of (possibly domain-general) simple decision mechanisms appropriate to a particular 
adaptive problem, and the domain-specific cues in the environment that will allow those 
mechanisms to solve that problem effectively. 
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Memory: Retrieving and forgetting information 
 

To the extent that decisions are based on information, this information is either accessed 
immediately from the external environment, or from past experience stored internally in 
some form of memory.  Beginning with the pioneering work of Hermann Ebbinghaus 
(1885/1964), cognitive psychologists usually focus on three aspects of human memory—
its capacity, its accuracy, and its structure (e.g. Tulving & Craik, 2000; Koriat, 
Goldsmith, & Pansky, 2000)—but pay little attention to how it has been shaped by 
selective pressures, those costs and benefits arising through its use for particular 
functions in particular environments.   Recently, however, researchers have begun to 
investigate the relationship between the design of memory systems and how they meet 
their adaptive functions.  In this section, we describe some of the trends toward putting 
evolutionary thinking into the study of memory. 
 
Memory has “evolved to supply useful, timely information to the organism’s decision-
making systems” (Klein, Cosmides, Tooby, & Chance, 2002, p. 306).  The evolution of 
memory to serve this function has occurred in the context of a variety of costs, which also 
shape the design of particular memory systems.  Dukas (1999) has articulated a wide 
range of costs of memory, including (1) maintaining an item once it has been added to 
long-term memory, (2) keeping it in an adaptable  form that enables future updating, (3) 
growing and feeding the brain tissue needed to store the information, and (4) silencing 
irrelevant information.  But taking into consideration the demands of decision 
mechanisms outlined earlier, the two main selective pressures acting on memory systems 
(particularly long-term memory) appear to be, first, to produce quickly the most useful 
stored information, and second, not to produce too much information.   
 
These pressures, like the ones we focused on for decision mechanisms, are broad and 
general—applying to memory systems no matter what domains they deal with.  One way 
to meet these pressures would be to store in the first place just that information that will 
be useful later.  Having limited memory capacity can work to restrict initial storage in 
this way, as we will see later with regard to short-term memory.  In the case of long-term 
memory, Thomas Landauer (1982) has estimated that a mature person has “a functional 
learned memory content of around a billion bits” (p. 491).  This is much less than the data 
storage capacity of a single hour-long music CD, suggesting that we are indeed storing 
very little of the raw flow of information that we experience.  On the other hand, most of 
what little we do remember is nonetheless irrelevant to any given decision, so our 
memory systems must still be designed to retrieve what is appropriate, and not more.  
How can this be achieved?  One way is through the very process that at first glance seems 
like a failure of the operation of memory: forgetting. 
 
 
Long-term memory: Forgetting curves and the statistical properties of information 
use 
 
John R. Anderson (1990) put forward an approach he called the rational analysis of 
behavior as a method for understanding psychological mechanisms in terms of their 
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functions or goals—equivalent to Marr’s (1982) computational level of analysis, and also 
the level at which evolutionary psychology should be focused (Cosmides & Tooby, 
1987).  Having in mind a view of evolution as constrained local optimization (or hill-
climbing), Anderson set out to assess the explanatory power of the principle that “the 
cognitive system operates at all times to optimize the adaptation of the behavior of the 
organism” (1990, p. 28).  Anderson and Milson (1989) took this approach to propose that 
memory should be viewed as an optimizing information retrieval system with a database 
of stored items from which a subset is returned in response to a query (such as a list of 
key terms).  A system of this sort can make two kinds of errors: It can fail to retrieve the 
desired piece of information (e.g., failing to recall the location of one’s car), thus not 
meeting the pressure of usefulness.  But if the system tried to minimize such errors by 
simply retrieving everything, it would commit the opposite error: producing irrelevant 
pieces of information (and thus not meeting the pressure of parsimony), with the 
concomitant cost of further examining and rejecting what is not useful.  To balance these 
two errors, Anderson and Milson propose, the memory system can use statistics extracted 
from past experience to predict which memories are likely to be needed soon, and keep 
those readily retrievable.  Consequently, memory performance should reflect the patterns 
with which environmental stimuli have appeared and will reappear in the environment. 
 
This argument can be illustrated with the famous forgetting curve, first described by 
Ebbinghaus (1885/1964): Memory performance declines (forgetting increases) with time 
(or intervening events) rapidly at first and then more slowly as time goes on, 
characterizable as a power function (Wixted, 1990; Wixted & Ebbesen, 1991, 1997).  
Combining this prevalent forgetting function with Anderson’s rational analysis 
framework yields the following prediction: To the extent that memory has evolved in 
response to environmental regularities, the fact that memory performance falls as a 
function of retention interval implies that the probability of encountering a particular 
environmental stimulus (e.g., a word) also declines as a power function of how long it has 
been since it was last encountered.  Anderson and Schooler (1991, 2000) analyzed real-
world data sets to find out whether the environmental regularities match those observed 
in human memory.  One of their data sets, for example, consisted of words in the 
headlines of the New York Times for a 730 day period, and they assumed that reading a 
word (e.g., “Qaddafi”) represents a query to the human memory data base with the goal 
of retrieving its meaning. 
 
At any point in time memories (“Qaddafi”) vary in how likely they are to be needed.  
According to the rational analysis framework, the memory system attempts to optimize 
the information retrieval process by making available those memories that are most likely 
to be useful.  How does it do that?  It does so by extrapolating from the past history of 
use to the probability that a memory is currently be needed — the need probability of a 
particular memory trace.  Specifically, Anderson (1990) suggested that memories are 
considered in order of their need probabilities, and if the need probability of a memory 
falls below a certain threshold, it will not be retrieved.  Consistent with their view that 
environmental regularities are reflected in human memory, Anderson and Schooler 
(1991) found that the probability of a word occurring in a headline of the New York Times 
at any given time is a function of its past frequency and recency of occurrence.  In other 
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words, the demand for a particular piece of information to be retrieved drops the less 
frequently it occurred in the past and the greater the period of time that has passed since 
its last use.  This regularity parallels the general form of forgetting that has so often been 
observed since the days of Ebbinghaus.  From this parallel, Anderson and Schooler 
concluded that human memory is a highly functional system insofar as it systematically 
renders pieces of information less accessible when they have not been used for a while.  
This functionality operates across domains as a response to broad selection pressures for 
maintaining quick access to information likely to be useful in upcoming situations (and 
conversely not maintaining access to information less likely to be needed). 
 
 
The functions of forgetting 
 
Uncluttering the mind:  William James, in the Principles of Psychology (1890), was 
among the first psychologists who pointed to the important function of forgetting.  In 
fact, he argued that “in the practical use of our intellect, forgetting is as important a 
function as recollecting” (p. 679).  In his view, forgetting is the mechanism that enables 
selectivity.  Selectivity, in turn, he asserted 
 

is the very keel on which our mental ship is built.  […]  If we remembered 
everything, we should on most occasions be as ill off as if we remembered 
nothing.  It would take as long for us to recall a space of time as it took the 
original time to elapse, and we should never get ahead with our thinking. (James, 
1890, p. 680)  

 
More recently, contemporary psychologists have begun to specify some of the adaptive 
functions of forgetting.  Elisabeth and Robert Bjork (1996), for instance, have argued that 
it is critical to prevent out-of-date information—say, old passwords or where we parked 
the car yesterday—from interfering with the recall of currently needed information.  In 
their view, the mechanism that erases out-of-date information is retrieval inhibition: 
information that is rendered irrelevant becomes less retrievable.  Schacter (2001) also 
stressed the adaptive functions of forgetting.  He, for instance, suggested that various 
types of misattribution occur when only the general sense of what happened, the gist, is 
recalled, while the experience’s specific details are forgotten.  Memory for gist, in turn, 
may be fundamental, for instance, for the ability to generalize and categorize across 
specific instances and thus to organize the permanent flux of experiences.  Take 
Schacter’s example of the category “bird” for illustration.  To develop a coherent notion 
of “bird”, a person has to learn that superficially diverse instances such as a cardinal and 
an oriole are both members of the same category. 
 
Boosting heuristic performance: The benefits of forgetting, however, may extend 
beyond the general advantage of setting aside needless information.  Forgetting may also 
boost the performance of heuristics that exploit partial ignorance, such as the recognition 
heuristic described earlier (Goldstein & Gigerenzer, 2002).  Ignorance can come from not 
learning about portions of the environment in the first place, or from later forgetting 
about some earlier encounters.  To examine whether human recognition memory forgets 
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at an appropriate rate to promote the use of the recognition heuristic, Schooler and 
Hertwig (2004) implemented this heuristic within an existing cognitive architecture 
framework, ACT-R (Anderson & Lebiere, 1998).  This cognitive architecture is 
particularly suited to the present analysis as it offers both a plausible memory framework 
and a strong ecological foundation inherited from the rational analysis of memory 
mentioned earlier; specifically, ACT-R learns by strengthening memory records 
associated with, for instance, the names of foodstuffs, habitats or people according to a 
function that takes the frequency and recency with which they were encountered in the 
environment into account.  Schooler and Hertwig’s simulations suggest that in the 
context of the recognition heuristic one function of forgetting is to actively maintain the 
system’s ignorance.  In other words, in all their simulations they found that the 
performance of the recognition heuristic indeed benefited from (a medium amount of) 
forgetting. 
 
Strategic information blockage: In the case of the recognition heuristic, forgetting 
refers mostly to content in declarative memory.  Could even forgetting of parts of one’s 
autobiography be adaptive?  The argument that forgetting of seemingly unforgettable 
experiences, that is, traumatic experiences, can serve important functions has been 
entertained since the late 19th century.  Since the 1980s the notion of repressed memories 
— in particular of memory for childhood sexual abuse — has received a great deal of 
academic as well as public attention.  We do not review the controversial debates that 
ensued pertaining to such questions as whether or not recovered memories can occur and 
how accurately they correspond to actual events (for an excellent review see Silvers, J. 
Schooler, & Freyd, 2002).  Here we are only concerned with one theory of recovered 
memory in which temporary forgetting (or reduced accessibility) of traumatic events is 
assumed to be functional. 
 
Betrayal trauma theory proposed by Jennifer Freyd (1996) suggests that the function of 
amnesia for childhood abuse is to protect the child from the knowledge that a key 
caregiver may be the sexual perpetrator.  In situations involving treacherous acts by a 
person depended on for survival, a “cognitive information blockage” (Silvers et al., 2002, 
p. 177) may occur that results in an isolation of knowledge of the event from awareness.  
In fact, such temporary forgetting may be a prerequisite for maintaining the crucial 
relationship with the caregiver, and ultimately, for survival.  At least two different 
mechanisms can account for memory impairments for trauma-related information.  One is 
avoidant processing, in which people disengage attention from threatening information 
and thus fail to even encode it.  Another mechanism locates the cause for the information 
blockage at the retrieval stage, assuming that threatening information is encoded but 
cannot be retrieved (see McNally, Clancy, & Schacter, 2001).  Betrayal trauma theory 
also yields specific predictions about the factors that will make this type of forgetting 
most probable—for instance, it predicts that amnesia will be more likely the more 
dependent the victim is on the perpetrator (e.g., parental vs. nonparental abuse).  While 
the experimental evidence for betrayal trauma theory is preliminary (Silvers et al., 2002) 
and controversial (see McNally et al., 2001 and DePrince & Freyd, 2004), the theory 
illustrates how domain-specific forgetting may have unique adaptive functions. 
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Hindsight bias: Consequence of future-oriented memory 
 
Of course, forgetting is not always beneficial.  Take the hindsight bias as an example (see 
Hoffrage & Pohl, 2003).  The hindsight bias is the phenomenon that once people know 
the outcome of an event, they tend to overestimate what could have been anticipated in 
foresight.  This can come about because people do not have perfect memories of all the 
opinions and judgments they hold in the past.  Therefore, if they have to remember in 
hindsight how likely they thought it was that, for instance, Al Gore would be elected— in 
light of their knowledge that he lost — they may overestimate their previous doubts.  
Fischhoff (1982) stressed the potentially harmful consequences of the hindsight bias: 
“The very outcome knowledge which gives us the feeling that we understand what the 
past was all about may prevent us from learning anything from it” (p. 343).  Following 
Fischhoff’s lead, the hindsight bias has been seen as a severe and systematic bias in 
memory. 
 
Even here, however, adopting a functional perspective can provide a deeper 
understanding of the memory illusion.  Hoffrage, Hertwig and Gigerenzer (2000) took 
such a perspective in their model of the hindsight bias.  They assumed that being 
informed about the outcome of an event (e.g., an election) can result in an updating of the 
knowledge that was originally used (e.g., which candidate has more charisma) to try to 
infer which outcome would occur (e.g., which candidate would win).  In addition, their 
model assumes that if people cannot retrieve their original judgment, they will 
reconstruct it by going through the same steps of inference that led to the original 
judgment, that is, people will (re)simulate their original judgment process.  In the mean 
time, however, some of the elusive and missing cue values have been updated in light of 
the actual outcome.  Therefore, the reconstructed judgment may turn out to be closer to 
the actual outcome than the original judgment was.  This model makes the novel 
prediction—confirmed by Hoffrage et al.’s studies—that feedback on one variable (e.g., 
election outcome) can lead to systematic changes not only in the recalled prediction, but 
also in the memory of associated variables (e.g., cues related to election outcomes such as 
charisma of the person who lost the election).  Moreover, this algorithmic process model 
is specific enough to explain why hindsight bias occurs, does not occur, or is reversed in 
particular individual responses (see Hoffrage et al., Figure 5). 
 
Is the hindsight bias detrimental?  No doubt, if the goal is to veridically reconstruct 
previously held judgments, preferences, or opinions, then hindsight bias caused by 
knowledge updating can be a great hindrance to fulfilling this goal.  But such a goal is 
unlikely to be very common or important.  The real world, as opposed to the 
psychological laboratory, is inherently unstable, and the longer the time interval since the 
last assessment of, say, a foraging location, the more likely that the environment will 
have changed and the location will no longer have the same value.  As Bartlett 
(1932/1995) put it: “In a world of constantly changing environment, literal recall is 
extraordinarily unimportant” (p. 204).  In other words, in the trade-off between an 
accurate remembrance of the past and accurate inferences in the future, emphasizing 
future performance should win.  Our memory seems to be designed to do just this, 
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wagering on the future rather than on the past:  Simulations by Hertwig, Fanselow and 
Hoffrage (2003) suggest that at the same time that knowledge updating may be increasing 
hindsight bias, it can increase the accuracy of future inferences.  On this view, the 
hindsight bias is a cheap price to pay for an adaptive advantage, namely, the timely 
provision of useful up-to-date knowledge. 
 
 
Short-term memory: Functional explanation of its bounds 
 
The previous analyses apply to long-term memory.  Long-term memory, however, is only 
one of the components posited within traditional memory architectures, for instance, the 
Atkinson-Shiffrin model of human memory (Atkinson & Shiffrin, 1968).  Another key 
component is short-term memory. The classic estimate of the capacity of short-term 
memory is 7!2 chunks (Miller, 1956), and more recent estimates make it even smaller 
(Cowan, 2001).  Why has it evolved to be so limited?  Anderson (1990) feels that it is 
because we are “trapped on some local optimum of evolution” (p. 92), but this does not 
seem convincing.  While greater short-term memory size may have required somewhat 
increased brain metabolism or other tradeoffs (Dukas, 1999), there do not seem to be 
inherent constraints that would have ruled out more generous capacities.  In the absence 
of strong constraints, more plausible explanations for why evolution has produced such a 
modest mental storage capacity draw on functional considerations.  One of the most 
interesting functional explanations has been put forth by Yakov Kareev in a series of 
papers (Kareev, 1995a,b; 2000; Kareev, Lieberman, & Lev, 1997).  Kareev argues that 
while limitations of working memory capacity force people to rely on small samples of 
information, these small samples also have a specific advantage: They can enhance 
inferences of causality by enabling the early detection of covariation between elements in 
the environment.3 
 
Kareev’s argument runs as follows.  To determine at a given point whether two variables 
covary (e.g., does this pile of droppings mean a predator is nearby?), one often needs to 
rely on data sampled from one’s environment or from long-term memory (i.e., past 
observations of the environment), which is then entered into working memory.4  To the 
extent that the degree of covariation is derived from the information that is currently in 
one’s working memory, that system’s limits imposes an upper bound on the size of the 
information sample that can be considered at one time.  Taking Miller’s estimate as a 
starting point, Kareev et al. (1997; Kareev, 2000) suggested that using samples of around 
7 observations of the co-occurrence (or lack thereof) of two events increases the chances 
for detecting a correlation between them, compared to using a greater number of 
observations. 
 

                                                 
3 Another proposal for a functional benefit of bounded short-term memory is MacGregor’s (1987) 
theoretical argument that it can speed up information retrieval. 
 
4 Kareev uses the term “working memory” as akin to the earlier concept “short-term memory,” but see 
Baddely, 2000, on the different meanings of the term “working memory.” 
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The reason is that randomly drawn samples of a population of two-variable observations 
are likely to show a within-sample correlation that differs somewhat from the true 
population correlation.  More interestingly, looking at small randomly-drawn data 
samples (whether from the environment or from long-term memory) increases the 
likelihood of encountering a sample that indicates a stronger correlation than that of the 
whole population.  To see why, imagine drawing many small samples of two continuous 
variables, calculating the relationship between them (i.e., Pearson’s product-moment 
correlation), and plotting the distribution of the correlation coefficients thus found. Then 
(provided that the population correlation is not zero), the resulting distribution will have a 
characteristic skewed shape, with both the median and the mode of the distribution more 
extreme than the corresponding population values.  Moreover, the amount of skewedness 
is a function of the sample size: The smaller the sample, the more skewed the resulting 
distribution.  (See Figure 1.) 
 
  [insert here Figure 1 of skewed distributions from Kareev] 
 
In other words, when drawing a small random sample from a population in which a 
correlation exists, the sample-based correlation estimate is more likely than not to be 
more extreme than the true correlation found in the population.  Thus, a limited working 
memory can function as an amplifier of correlations, allowing those present in the 
population to be detected earlier than they would be if working memory, and the sample 
size necessary to fill working memory, were larger.  Consistent with this thesis, Kareev et 
al. (1997) found that people with smaller working memory capacity detected correlations 
faster and used them to make correct predictions better than people with larger working 
memory capacity.  This enhanced ability to detect contingencies seems particularly 
important in domains in which the benefits of discovering a causal connection outweigh 
the costs of false alarms, which also increase in number with smaller sample sizes (a 
point highlighted by Juslin & Olsson, in press—but see Fiedler & Kareev, 2004, for 
further considerations).  Such domains may be characterized by situations in which 
missing potential threats would be extremely costly, including for instance learning about 
the cues associated with the presence of a predator or the signals presaging a stranger’s 
harmful intentions. 
 
Kareev’s (2000) analysis suggests that evolution may have designed the capacity of 
human working memory to correspond to a “window size” that amplifies existing 
contingencies in the world, thus fostering their early detection.  This thesis not only offers 
a functional explanation for why temporary mental storage capacity is so limited, it also 
sheds new light on what has been interpreted to be a cognitive or perceptual bias—the 
belief in the law of small numbers.  According to Tversky and Kahneman (1971/1982), 
“people’s intuitions about random sampling appear to satisfy the law of small numbers” 
(1982, p. 25), in that “people view a [small] sample randomly drawn from a population as 
highly representative, that is, similar to the population in all essential characteristics” 
(1982, p. 24), rather than understanding that small samples are more likely to deviate 
further from population statistics (e.g. the mean) than are large samples.  Tversky and 
Kahneman proceeded from this observation to criticize human intuition for being unduly 
swayed by small samples, foreshadowing the conjectures about the failings of human 



  Evolutionary Cognitive Psychology15 

rationality that dominated cognitive and social psychology in the decades to come (see 
e.g. Krueger & Funder, in press).  Certainly, overreliance on small samples may indeed 
exact a price in terms of systematic misperceptions of the world—but the important thing 
to ask from an evolutionary cognitive psychology perspective is how large that price is 
compared to the potential benefits accruing to their use.  Kareev’s analysis can be taken 
as a challenge to the premise that the more veridical the mental representations of the 
world, the better adapted the organism.5 
 
To conclude our discussion of the selective forces acting on memory, we return to 
Anderson and Milson (1989), who pointed out that “one seldom finds arguments for a 
theory of memory mechanisms cast in terms of the adaptiveness of these mechanisms” (p. 
703).  This situation now seems to be slowly changing, not least because of Anderson and 
colleagues’ leading work.  Moreover, exploring the adaptiveness of memory necessitates 
not only asking what memory was designed to do, but also how the design benefits could 
be achieved in light of the pertinent costs.  This combination of a functionalist view with 
a cost-benefit analysis of particular mechanisms, as often employed in evolutionary 
cognitive ecology (Dukas, 1998), will move us closer to a thorough understanding of the 
workings of human memory. 
 
 

Representation of Information: Modern Practices meet Evolutionary Constraints 
 

In the previous section we discussed some aspects of memory from an evolutionary point 
of view. But why do we have memory at all?  Why should we be able to recall 
representations of the past?  After all, changes in behavior could arise through learning 
even without the ability to remember independently any aspects of the events that we 
learned from.  Being able to store and retrieve information about what happened in the 
past, however, lets us process that information further in the light of new information and 
experience.  It also allows us to communicate the information to others (as well as to 
ourselves at later points in time) and combine it with information from them in turn.  
Ultimately, recalled information from the past enables us to form expectations about the 
future which can guide behavior in the present.6 
 
Internal memories, our focus in the previous section, are not the only innovation over the 
course of evolution for representing past events. Paintings of animals in Pleistocene 
caves, for instance, demonstrate one step in the development of representations that have 

                                                 
5 Referring to scientific models, William Wimsatt, a philosopher of biology, argued that “False models 
build locally truer theories” (Wimsatt, 1987), because they isolate aspects of our ignorance and allow us to 
progress.  His supposition is that the “creative use of falsehood is one of the best tools the practicing realist-
scientist ... has for discovering truths about nature.”  Our conjecture is that systematically inaccurate mental 
models of the world can also confer functional benefits to organisms whose aim is not to explain the world 
but rather to survive and reproduce in it. 
 
6 See Freyd, 1983, 1990, for a theory of how pressures for shareability of information between and within 
individuals can, in conjunction with pressures from natural selection on cognitive systems, shape the 
representations of information that we use. 
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been used to externalize internal states—here, memories of what the early artists had 
previously seen outside the cave. During the evolution of culture such external 
representations were complemented by symbols that became standardized and gradually 
reached greater and greater levels of abstraction.  Ultimately this led to alphabets and 
number systems that could be used to convey complex information to others, both 
contemporaries and successors. Parallel to this process, procedures to collect and 
combine information have been refined over the centuries, finally leading to huge 
national and international institutions founded to gather and aggregate demographic, 
social, economic, medical, and other kinds of data (Gigerenzer, Swijtink, Porter, Daston, 
Beatty, & Krüger, 1989). 
 
As a consequence, the sources of information that could be used as a basis for judgments 
and decisions have increased over the course of human evolution, from individual 
experiences (a source that we share with even the lowest animals), through reports from 
family or group members (a source that social animals have, and that humans have in 
greatly developed form), to modern statistics (a source that has been added only very 
recently during our cultural evolution). Does it make a difference, in terms of individual 
decision making, what form the information takes as a consequence of its source?  
Adopting an evolutionary point of view, one would hypothesize that the answer is “yes,” 
because our cognitive systems have been exposed to different forms and sources of 
information for different amounts of time. In particular, forms that have been created 
during our most recent cultural development may pose a bigger challenge to our 
information processing capacities than those to which the human species had much more 
time to adapt.  In this section we present evidence supporting this hypothesis, showing 
how different types of representations affect decisions first in situations involving risks, 
and second in the context of Bayesian inference tasks.  As in the previous sections, the 
selection pressures we consider here apply to the use of information representations 
across a wide range of functions and tasks, and so will have shaped cognitive 
mechanisms from many domains in similar ways. 
 
 
Decisions from experience versus decisions from description 
 
Much of everyday decision making can be understood as an act of weighing the costs 
against the benefits of the uncertain consequences of our choices. Take the decision of 
whether to engage in short-term mating as an example. Although casual sex has obvious 
evolutionary benefits (especially for men; see, e.g., Trivers, 1972), it can cause one to 
contract a sexually transmitted disease, acquire an undesirable social reputation, or suffer 
violence at the hands of a jealous partner (for other risks of casual sex from an 
evolutionary perspective, see Buss, 2004). Each of these consequences, whether 
beneficial or harmful, is uncertain: It might happen, and it might not happen. Choosing to 
have casual sex is thus like rolling a die, each side of which represents one or more 
possible consequences of that choice. Only after the die has come to rest, the decision 
made, and the action taken, will we find out which of the consequences has become 
reality. Because uncertainty is an integral part of “virtually all decisions,” wrote 
Goldstein and Weber (1997), “life is a gamble” (p. 569). 
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The metaphor of life as a gamble has exerted a powerful influence on psychological 
research on decision making under risk, giving rise, for example, to the ubiquitous use of 
monetary lotteries in laboratory experiments. Studies that employ such lotteries typically 
provide respondents with a symbolic—usually written—description of the options, for 
example: 
 
A: Get $4 with probability .8,  or   B: Get $3 for sure. 
 $0 otherwise. 
 
The most prominent descriptive theory of how people decide between such lotteries is 
prospect theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). Briefly put, 
prospect theory assumes that the human mind “frames” the outcomes of a decision in 
terms of gains and losses. Losses are more painful than gains of the same magnitude are 
pleasurable, but sensitivity to identical decrements (or increments) in value diminishes as 
the losses (or gains) increase.  Prospect theory further posits that, relative to the objective 
probabilities with which an outcome can be expected to occur, people make choices as if 
small-probability events receive more weight than they deserve and as if large-probability 
events receive less weight than they deserve. This assumption can explain why, for 
instance, most people (80% of participants in Kahneman & Tversky, 1979) are inclined 
to choose lottery B over A above: The rare outcome in A, receiving $0, receives more 
weight than it deserves, reducing the perceived value of A. 
 
But are choices between options like A and B representative of the gambles with which 
life presents us? Hertwig, Barron, Weber, and Erev (2004, in press) argue that we rarely 
have complete knowledge of the possible outcomes of our actions and their probabilities. 
When deciding whether to have a one-night stand, for instance, we do not make a 
decision from description, consulting a written list of the possible consequences and their 
likelihoods. Instead, we rely on the experience that we (or others) have accumulated over 
time. Hertwig et al. referred to this kind of choice as a decision from experience. 
 
Do people behave differently when they learn about outcomes and probabilities from 
written descriptions as opposed to experience? To find out, Hertwig et al. (2004, in press) 
created an experimental environment in which decision makers started out ignorant of the 
outcomes and the outcome probabilities associated with pairs of lotteries. On each trial, 
respondents saw two buttons, here denoted A and B, on a computer screen and were told 
that each button was associated with a payoff distribution. When they clicked on a button, 
an outcome (e.g., $3 if they chose B above, or $0 on 20% of clicks and $4 on 80% of 
clicks if they chose A) was randomly sampled from its distribution. Respondents could 
sample from either distribution as many times as they wished. After they stopped 
sampling, they were asked which lottery they wanted to play for real payoffs. 
 
Hertwig et al. (2004, in press) compared the choices of respondents who received written 
descriptions of each option (i.e., the amount of money to be gained or lost and the 
probability of winning or losing it) with those made by respondents who were allowed to 
sample the possible outcomes freely and repeatedly as described above. Although 
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respondents in the description group and the experience group were given structurally 
identical problems, the choices they made differed dramatically between the groups. 
Across six problems, the average absolute difference between the percentage of 
respondents choosing the option with the higher expected value (e.g., A above) in the 
experience and description groups was 36 percentage points. Moreover, in every 
problem, this difference was consistent with the assumption that rare events (e.g., $0 in 
A) had more impact than they deserved (given their objective probability) in decisions 
from description—consistent with prospect theory—but had less impact than they 
deserved in decisions from experience. 
 
To account for the dramatic difference between decisions from description and decisions 
from experience, Hertwig and colleagues cited two factors—small samples and a recency 
effect. First, the experience group tended to rely on small samples of outcomes, which 
meant that they either did not encounter the rare event or encountered it less frequently 
than expected on the basis of its objective probability. Second, they paid more attention 
to recently experienced outcomes. Most people did not encounter rare events in the last 
few draws from the payoff distribution because of the very rarity of those events.  In 
contrast, having read about the rare events in their written presentation alongside the 
common events, the description group appeared not to overlook the rare events but rather 
to overweight them. 
 
The distinction between decisions from description and decisions from experience not 
only explains people’s different risky choices in structurally identical problems but also 
points to the solution to an intriguing puzzle related to the behavior of bees. Because 
animals do not share humans’ ability to process symbolic representations of risky 
prospects, all their decisions (for instance, about where to forage) are decisions from 
experience. In a study of foraging decisions made by bees, Real (1991) observed that 
“bumblebees underperceive rare events and overperceive common events” (p. 985). To 
explain why bees’ “decision weights” diverge from those observed in humans and 
captured by prospect theory, Real cited, among other factors, the fact that bees’ samples 
from payoff distributions are truncated due to memory constraints. Although humans and 
bumblebees do not share a recent evolutionary history, Hertwig et al.’s (2004) results 
suggest that the decisions of bumblebees should converge with those of humans when 
humans, like bees, rely on small samples of experience (see also Weber, Shafir ,& Blais, 
2004). 
 
The more general implication of the distinction between decisions from description and 
decisions from experience is that representations that are identical mathematically can be 
different psychologically. Furthermore, the two sources of information differ not only in 
form, but also in the length of time that they have exerted a pressure on our cognitive 
abilities to understand and process them appropriately.  Throughout the course of human 
evolution we have experienced events in our interactions with the environment, but only 
very recently have we begun to aggregate such information and communicate it in the 
form of statistical descriptions.7 Thus, one might speculate that our cognitive strategies 
                                                 
7 The further questions of how people use non-scientific language (as opposed to statistics) to communicate 
subjective likelihoods, via words such as “often”, “sometimes”, and “rarely”, and how these words are 
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for making decisions under risk are more likely tuned to experienced frequencies than to 
described probabilities. Not only does the research of Hertwig and colleagues just 
described support this assertion, but also work done in the domain of Bayesian 
reasoning—the topic to which we now turn. 
 
 
Inferences based on natural frequency versus probability representations 
 
How should we update our beliefs in light of new evidence?  For instance, how should a 
Pleistocene hunter update his belief regarding the chance of finding prey at a particular 
location after he has seen some unusual movements in the grass over there? As this 
example shows, we have been facing the task of updating beliefs for a long time, and 
there should have been sufficient selective pressure to produce a mechanism able to 
perform such inferences. At first glance, however, the current empirical results are 
inconclusive: Whereas research by Gallistel (1990) and Real (1991) suggests that animals 
are adept at such Bayesian inferences (updating of beliefs in light of new evidence), 
humans seem to lack this capability: “In his evaluation of evidence, man is apparently not 
a conservative Bayesian: he is not a Bayesian at all” (Kahneman & Tversky, 1972, p. 
450). How can it be that bumblebees are better at making Bayesian inferences than 
humans?  
 
As in the previous section, the answer lies in the different ways that information can be 
represented.  How did bumblebees and Pleistocene hunter-gatherers encounter the 
statistical information about environmental features?  On a trial-by-trial basis, that is, by 
sequentially observing cases—which, in the simplest case of dichotomous variables, 
means observing whether a predictor is present or absent and whether the criterion is 
present or absent.  Adaptive behavior can be based on accurate judgments of the 
probability of the criterion being present given that the predictor is present.  Such 
judgments can be made by a mechanism that is sensitive to the difference between the 
number of cases in which predictor and criterion are present and the number of cases in 
which only the predictor is present (possibly giving more weight to the most recent 
cases). Experiments with human participants in which cases are sequentially presented, 
thereby allowing participants to observe the states of the predictor and the criterion over 
successive trials in a natural fashion, have shown that people are well able to estimate the 
probability of observing the criterion given the presence of the predictor (Christensen-
Szalanski & Beach, 1982). 
 
In contrast, those studies leading to the conclusion that people are not able to reason in a 
proper Bayesian fashion have presented participants with descriptions given in terms of 
probabilities.  For example, Eddy (1982) presented 100 physicians with the following 
information:  
 

                                                                                                                                                 
understood by the audience, is a large research area in itself; see for example Hertwig and Gigerenzer 
(1999), Dhami and Wallsten (in press). 
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The probability of breast cancer is 1% for a woman at age forty who participates in 
routine screening.  If a woman has breast cancer, the probability is 80% that she 
will have a positive mammography.  If a woman does not have breast cancer, the 
probability is 9.6% that she will also have a positive mammography.   

 
Physicians were then asked to imagine a woman in this age group who had a positive 
mammography in a routine screening, and to state the probability that she actually has 
breast cancer. Out of those 100 physicians, 95 judged this probability to be between .7 
and .8. To obtain the Bayesian solution, which is usually seen as the normatively correct 
answer, one “simply” has to insert the probabilities into Bayes’ rule (if one were lucky 
enough to know about it and remember it): 
 
 
p(C|M)  =  ______p(C)p(M|C)________   =  _____(.01) (.80)________ 
                   p(C)p(M|C) + p(-C)p(M|-C)          (.01) (.80) + (.99) (.096)   
 
 
where C stands for breast cancer, -C stands for no cancer, and M stands for a positive 
mammography result. The result is actually .07, indicating that probability-based 
descriptions led most of the decision makers in Eddy’s study widely astray.  (See Figure 
2, left panel.) 
 

[insert here Figure 2 of probability and frequency solutions to Bayesian problem from 
Hoffrage] 

 
However, the differences in decision-making performance here do not come down to just 
a distinction between beneficial experience and detrimental description.  By considering 
what kinds of representations our minds evolved to deal with, Gigerenzer and Hoffrage 
(1995) created an effective compromise between sequential acquisition of information 
and descriptions in terms of probabilities: They presented participants with descriptions 
in which the probabilities were translated into natural frequencies.  Natural frequencies 
result from natural sampling (Kleiter, 1994) in which cases are randomly drawn from a 
specified reference class. Thus, while participants did not encounter cases one-by-one, 
they were presented with the aggregate statistics in terms of numbers that arise when an 
entire sample of individual cases is experienced and counted.   
 
For illustration, the probability information provided by Eddy (1982) when converted 
into natural frequencies reads as follows: “Out of 10,000 women, 100 have breast cancer. 
Out of those 100 women with breast cancer, 80 have a positive mammogram.  Out of the 
remaining 9,900 women without breast cancer, 950 nonetheless have a positive 
mammogram.”  Asking for the probability that a woman has breast cancer given a 
positive mammogram now becomes “How many of those women with a positive 
mammogram have breast cancer?”  This question, calling for an inference that has to be 
made from information presented in terms of natural frequencies, is much easier to 
answer.  (See Figure 2, right panel.)  Gigerenzer and Hoffrage (1995) first replicated the 
finding that presenting information in probabilities resulted in poor performance: Across 
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15 tasks, participants reasoned the Bayesian way only 16% of the time. When the 
information was presented in terms of natural frequencies, this percentage rose to 46%, 
and the number of answers that were close to Bayesian rose greatly as well.  Similar 
results were obtained with physicians (Hoffrage & Gigerenzer, 1998), medical students 
(Hoffrage, Lindsey, Hertwig, & Gigerenzer, 2000), and lawyers (Lindsey, Hertwig, & 
Gigerenzer, 2003). 
 
Gigerenzer and Hoffrage (1995) proposed two explanations to account for the facilitating 
effect of natural frequencies: computational simplification and evolutionary preparedness 
for (natural) frequencies.  With probabilities, three pieces of information have to be taken 
into account, whereas with natural frequencies there are only two. Probability 
representations require the base rates (e.g., of disease and no disease) to be used to 
multiply the two likelihoods (e.g., probability of symptom given disease, and symptom 
given no disease). With natural frequencies, in contrast, the base rates are already 
contained implicitly and thus do not have to enter the calculation explicitly (Gigerenzer 
& Hoffrage, 1995). Further studies, however, showed that computational simplification 
alone cannot account for the increased performance of people using natural frequencies8.  
Instead, these authors conclude that reasoning performance increases substantially when 
information is presented in terms of the natural frequencies that correspond to the way 
organisms have acquired information through much of evolutionary history—that is, by 
naturally sampling (and tallying) events observed in the natural environment (see also 
Brase, 2002b). 
 
 

Conclusions: The advantages of limited cognitive systems 
 
Cognitive psychologists have long studied the limitations of human thought, and with 
good reason.  Despite Hamlet’s exhortation that we humans are “noble in reason...infinite 
in faculty” (Act 2, Scene 2), we struggle to keep more than a half dozen things in mind at 
once, we quickly forget what we have learned, we ignore much of the available 
information when making decisions, and we find it difficult to process deeply what 
information we do consider.  But in focusing on the negative implications of these 
limitations, cognitive psychology may have grabbed the wrong end of the stick.  The 
limited human mind is not just the compromised result of running up against constraints 
that can little be budged, such as the current birth-canal-limited size of the skull; rather, it 
is a carefully orchestrated set of systems in which limits can actually be beneficial 
enablers of functions, not merely constraints (Cosmides & Tooby, 1987).  A less limited 
mind might fare worse in dealing with the adaptive problems posed by the structured 
environment.  As Guildenstern later responded to Hamlet, presciently summing up 
modern psychology’s computationally-intensive theories of cognition, “there has been 
much throwing about of brains.”  In many cases, throwing fewer brains at a task might do 
the trick—more is not always better. 
 

                                                 
8 Consistent with this conclusion, Brase (2002a) has shown that frequencies were seen as clearer and easier 
to understand than single-event probabilities. 
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Considering the widespread selective pressures and attendant costs and benefits that have 
acted over the course of evolution on our cognitive mechanisms can help us to uncover 
these surprising instances when limitations are beneficial (and helps us understand the 
design and functioning of those mechanisms even when their limits are constraining).  As 
we have seen in this chapter (see Hertwig & Todd, 2003, for more), limited information 
use can lead simple heuristics to make more robust generalizations in new environments.  
Forgetting in long-term memory can improve the performance of recall, and can protect 
individuals from harmful reactions at vulnerable periods in their lives.  And limited short-
term memory can amplify the presence of important correlations in the world. 
 
But beyond just enhancing the abilities of certain cognitive systems, limits can even 
enable functions that may not be possible otherwise.  According to Newport’s (1990) 
“less-is-more” hypothesis on the role of limits in language learning, “the very limitations 
of the young child’s information processing abilities provide the basis on which 
successful language acquisition occurs” (p. 23).  Elman (1993) tested this idea with a 
neural network model, which he found was unable to learn the grammatical relationships 
in a set of several thousand sentences when given a large memory, but which could pick 
up the grammar incrementally if memory started small and gradually expanded.  As he 
explained, “The initial memory limitations ... act as a filter on the input, and focus 
learning on just that subset of facts which lay the foundation for future success” (Elman, 
1993, pp. 84-85). 
 
These potential benefits of cognitive limitations compose one of the main themes we 
have sketched here in our picture of the issues that should be addressed within an 
evolution-inspired cognitive psychology.  We have portrayed the importance of 
considering how general selective pressures—those arising in multiple task domains—
can shape adaptive cognitive mechanisms, in addition to the shaping forces of domain-
specific task requirements and environment structure.  But most of the picture remains to 
be filled in.  Here are some of the pressing questions open for immediate exploration (see 
Todd, Gigerenzer, & the ABC Research Group, 2000, for others): How is the adaptive 
toolbox of cognitive mechanisms filled—that is, what are the processes through which 
heuristics evolve, develop, are learned individually, or are acquired from one’s culture?  
How do we select particular tools in particular situations?  What role do other possible 
factors, such as emotions or social norms, play in decision heuristics?  How effective can 
small information samples be for learning about one’s environment?  How does the use 
of particular cognitive mechanisms actually shape the environment itself (e.g., Todd & 
Kirby, 2001)?  What selective pressures have shaped other cognitive capacities we have 
not touched upon such as attention, categorization, and planning?9  And what methods 
are most appropriate for studying the action of selective forces on cognitive adaptations? 
 
                                                 
9 For instance, the history of research on categorization reflects the rise of openness to evolutionary 
thinking in psychology, as it progressed from the use in the 1950s of artificial stimuli assigned to artificial 
categories by logical rules, to demonstrations in the 1970s that such research did not generalize to natural 
categories like species (Rosch, 1975), to arguments in the 1990s that human categorization is driven by 
domain-specific principles (Tooby & Cosmides, 1992; Hirschfeld & Gelman, 1994). 
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Taking an evolutionary perspective can help introduce new unity and coherence (as well 
as new ideas and hypotheses) into cognitive psychology.  But the benefits of bringing the 
cognitive and evolutionary approaches to psychology together do not flow solely from 
the latter to the former.  Cognitive psychology is also a salutary approach for 
evolutionary psychologists to engage with: It points to the importance of information, 
hence of the environment that it reflects, and the structure of the environment must be a 
central aspect of any evolutionary explanation of behavior.  The field’s experimental 
methodology is an important component of supporting and revising evolutionarily-
inspired hypotheses regarding human cognition and action.  Finally, cognitive 
psychology also reminds us of the crucial role that processing information with specific 
algorithmic mechanisms plays in the generation of adaptive behavior.  This step—
cognition—is often the “missing link” in non-psychological approaches to investigating 
the evolution of behavior (Cosmides & Tooby, 1987), and is still too often missing within 
evolutionary psychology studies, as in those that merely assert correlations between 
environmental cues and behavioral outcomes.  By cross-fertilizing these two traditions, 
evolutionary and cognitive, a more vigorous hybrid psychology will be formed. 
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