Fourth Edition

Handbook of Parametric and Nonparametric Statistical Procedures

David J. Sheskin
Table of Contents
with Summary of Topics

Introduction ... 1
Descriptive versus inferential statistics 1
Statistic versus parameter .. 2
Levels of measurement ... 2
Continuous versus discrete variables ... 4
Measures of central tendency (mode, median, mean, weighted mean, geometric mean, and the harmonic mean) .. 4
Measures of variability (range; quantiles, percentiles, deciles, and quartiles; variance and standard deviation; the coefficient of variation) .. 10
Measures of skewness and kurtosis ... 16
Visual methods for displaying data (tables and graphs, exploratory data analysis (stem-and-leaf displays and boxplots)) ... 29
The normal distribution .. 45
Hypothesis testing ... 56
A history and critique of the classical hypothesis testing model 68
Estimation in inferential statistics .. 74
Relevant concepts, issues, and terminology in conducting research (the case study method; the experimental method; the correlational method) ... 75
Experimental design (pre-experimental designs; quasi-experimental designs true experimental designs; single-subject designs) 82
Sampling methodologies ... 98
Basic principles of probability .. 100
Parametric versus nonparametric inferential statistical tests 108
Univariate versus bivariate versus multivariate statistical procedures ... 109
Selection of the appropriate statistical procedure 110

Outline of Inferential Statistical Tests and Measures of Correlation/Association ... 125

Guidelines and Decision Tables for Selecting the Appropriate Statistical Procedure ... 133

Inferential Statistical Tests Employed with a Single Sample 141

Test 1: The Single-Sample z Test .. 143
 I. Hypothesis Evaluated with Test and Relevant Background Information ... 143
 II. Example ... 143
 III. Null versus Alternative Hypotheses ... 143
 IV. Test Computations ... 144
 V. Interpretation of the Test Results ... 145
 VI. Additional Analytical Procedures for the Single-Sample z Test and/or Related Tests ... 146
VII. Additional Discussion of the Single-Sample \(z \) Test .. 146
 1. The interpretation of a negative \(z \) value ... 146
 2. The standard error of the population mean and graphical representation of the results of the single-sample \(z \) test .. 147
 3. Additional examples illustrating the interpretation of a computed \(z \) value .. 152
 4. The \(z \) test for a population proportion .. 152

VIII. Additional Examples Illustrating the Use of the Single-Sample \(z \) Test ... 153

Test 2: The Single-Sample \(t \) Test .. 157
 I. Hypothesis Evaluated with Test and Relevant Background Information ... 157
 II. Example .. 158
 III. Null versus Alternative Hypotheses .. 158
 IV. Test Computations ... 158
 V. Interpretation of the Test Results .. 160
 VI. Additional Analytical Procedures for the Single-Sample \(t \) Test and/or Related Tests .. 162
 1. Determination of the power of the single-sample \(t \) test and the single-sample \(z \) test, and the application of Test 2a: Cohen's \(d \) index .. 162
 2. Computation of a confidence interval for the mean of the population represented by a sample .. 173

VII. Additional Discussion of the Single-Sample \(t \) Test .. 183
 1. Degrees of freedom ... 183

VIII. Additional Examples Illustrating the Use of the Single-Sample \(t \) Test ... 184

Test 3: The Single-Sample Chi-Square Test for a Population Variance 191
 I. Hypothesis Evaluated with Test and Relevant Background Information ... 191
 II. Example .. 192
 III. Null versus Alternative Hypotheses .. 192
 IV. Test Computations ... 193
 V. Interpretation of the Test Results .. 194
 VI. Additional Analytical Procedures for the Single-Sample Chi-Square Test for a Population Variance and/or Related Tests .. 196
 1. Large sample normal approximation of the chi-square distribution .. 196
 2. Computation of a confidence interval for the variance of a population represented by a sample .. 197
 3. Sources for computing the power of the single-sample chi-square test for a population variance .. 200

VII. Additional Discussion of the Single-Sample Chi-Square Test for a Population Variance .. 200

VIII. Additional Examples Illustrating the Use of the Single-Sample Chi-Square Test for a Population Variance .. 200

Test 4: The Single-Sample Test for Evaluating Population Skewness .. 205
 I. Hypothesis Evaluated with Test and Relevant Background Information ... 205
 II. Example .. 206
 III. Null versus Alternative Hypotheses .. 206
 IV. Test Computations ... 207
 V. Interpretation of the Test Results .. 209
VI. Additional Analytical Procedures for the Single-Sample Test for Evaluating Population Skewness and/or Related Tests .. 210

VII. Additional Discussion of the Single-Sample Test for Evaluating Population Skewness .. 210
 1. Exact tables for the single-sample test for evaluating population skewness .. 210
 2. Note on a nonparametric test for evaluating skewness .. 210

VIII. Additional Examples Illustrating the Use of the Single-Sample Test for Evaluating Population Skewness .. 211

Test 5: The Single-Sample Test for Evaluating Population Kurtosis 213
 I. Hypothesis Evaluated with Test and Relevant Background Information 213
 II. Example .. 214
 III. Null versus Alternative Hypotheses .. 214
 IV. Test Computations .. 215
 V. Interpretation of the Test Results .. 217

VI. Additional Analytical Procedures for the Single-Sample Test for Evaluating Population Kurtosis and/or Related Tests .. 218
 1. Test 5a: The D'Agostino–Pearson test of normality .. 218
 2. Test 5b: The Jarque–Bera test of normality .. 219

VII. Additional Discussion of the Single-Sample Test for Evaluating Population Kurtosis .. 220
 1. Exact tables for the single-sample test for evaluating population kurtosis .. 220
 2. Additional comments on tests of normality .. 220

VIII. Additional Examples Illustrating the Use of the Single-Sample Test for Evaluating Population Kurtosis .. 221

Test 6: The Wilcoxon Signed-Ranks Test .. 225
 I. Hypothesis Evaluated with Test and Relevant Background Information 225
 II. Example .. 225
 III. Null versus Alternative Hypotheses .. 226
 IV. Test Computations .. 226
 V. Interpretation of the Test Results .. 228

VI. Additional Analytical Procedures for the Wilcoxon Signed-Ranks Test and/or Related Tests .. 230
 1. The normal approximation of the Wilcoxon T statistic for large sample sizes .. 230
 2. The correction for continuity for the normal approximation of the Wilcoxon signed-ranks test .. 232
 3. Tie correction for the normal approximation of the Wilcoxon test statistic .. 233
 4. Computation of a confidence interval for a population median .. 234

VII. Additional Discussion of the Wilcoxon Signed-Ranks Test .. 235
 1. Power-efficiency of the Wilcoxon signed-ranks test and the concept of asymptotic relative efficiency .. 235
 2. Note on symmetric population concerning hypotheses regarding median and mean .. 236

VIII. Additional Examples Illustrating the Use of the Wilcoxon Signed-Ranks Test .. 237
Test 7: The Kolmogorov–Smirnov Goodness-of-Fit Test for a Single Sample

I. Hypothesis Evaluated with Test and Relevant Background Information ... 241
II. Example .. 242
III. Null versus Alternative Hypotheses ... 243
IV. Test Computations .. 244
V. Interpretation of the Test Results .. 248
VI. Additional Analytical Procedures for the Kolmogorov–Smirnov Goodness-of-Fit Test for a Single Sample and/or Related Tests .. 249
 1. Computing a confidence interval for the Kolmogorov–Smirnov goodness-of-fit test for a single sample .. 249
 2. The power of the Kolmogorov–Smirnov goodness-of-fit test for a single sample .. 250
 3. Test 7a: The Lilliefors test for normality ... 250
VII. Additional Discussion of the Kolmogorov–Smirnov Goodness-of-Fit Test for a Single Sample 252
 1. Effect of sample size on the result of a goodness-of-fit test ... 252
 2. The Kolmogorov–Smirnov goodness-of-fit test for a single sample versus the chi-square goodness-of-fit test and alternative goodness-of-fit tests .. 253
VIII. Additional Examples Illustrating the Use of the Kolmogorov–Smirnov Goodness-of-Fit Test for a Single Sample .. 253

Test 8: The Chi-Square Goodness-of-Fit Test .. 257

I. Hypothesis Evaluated with Test and Relevant Background Information ... 257
II. Examples .. 258
III. Null versus Alternative Hypotheses ... 258
IV. Test Computations .. 259
V. Interpretation of the Test Results .. 261
VI. Additional Analytical Procedures for the Chi-Square Goodness-of-Fit Test and/or Related Tests 261
 1. Comparisons involving individual cells when $k > 2$.. 261
 2. The analysis of standardized residuals ... 264
 3. The correction for continuity for the chi-square goodness-of-fit test .. 265
 4. Computation of a confidence interval for the chi-square goodness-of-fit test/confidence interval for a population proportion .. 266
 5. Brief discussion of the z test for a population proportion (Test 9a) and the single-sample test for the median (Test 9b) .. 269
 6. Application of the chi-square goodness-of-fit test for assessing goodness-of-fit for a theoretical population distribution ... 269
 7. Sources for computing of the power of the chi-square goodness-of-fit test .. 273
 8. Heterogeneity chi-square analysis ... 273
VII. Additional Discussion of the Chi-Square Goodness-of-Fit Test .. 277
 1. Directionality of the chi-square goodness-of-fit test ... 277
 2. Additional goodness-of-fit tests .. 279
VIII. Additional Examples Illustrating the Use of the Chi-Square Goodness-of-Fit Test 280
Test 9: The Binomial Sign Test for a Single Sample

I. Hypothesis Evaluated with Test and Relevant Background Information
II. Examples
III. Null versus Alternative Hypotheses
IV. Test Computations
V. Interpretation of the Test Results
VI. Additional Analytical Procedures for the Binomial Sign Test for a Single Sample and/or Related Tests
 1. Test 9a: The z test for a population proportion (with discussion of correction for continuity; computation of a confidence interval; procedure for computing sample size for test of specified power; additional comments on computation of the power of the binomial sign test for a single sample)
 2. Extension of the z test for a population proportion to evaluate the performance of m subjects on n trials on a binomially distributed variable
 3. Test 9b: The single-sample test for the median
VII. Additional Discussion of the Binomial Sign Test for a Single Sample
VIII. Additional Example Illustrating the Use of the Binomial Sign Test for a Single Sample
IX. Addendum
 1. Discussion of additional discrete probability distributions and the exponential distribution
 The multinomial distribution
 The negative binomial distribution
 The hypergeometric distribution
 The Poisson distribution
 Computation of a confidence interval for a Poisson parameter
 2. Conditional probability, Bayes' theorem, Bayesian statistics and hypothesis testing
 Conditional probability
 Bayes' theorem
 Bayesian hypothesis testing
 Bayesian analysis of a continuous variable
Test 10: The Single-Sample Runs Test (and Other Tests of Randomness)
I. Hypothesis Evaluated with Test and Relevant Background Information
II. Example
III. Null versus Alternative Hypotheses
IV. Test Computations
V. Interpretation of the Test Results
VI. Additional Analytical Procedures for the Single-Sample Runs Test and/or Related Tests
 1. The normal approximation of the single-sample runs test for large sample sizes
 2. The correction for continuity for the normal approximation of the
single-sample runs test ... 393
3. Extension of the runs test to data with more than two categories 394
4. Test 10a: The runs test for serial randomness 395
VII. Additional Discussion of the Single-Sample Runs Test 398
1. Additional discussion of the concept of randomness 398
VII. Additional Examples Illustrating the Use of the Single-Sample Runs Test 399
IX. Addendum .. 402
1. The generation of pseudorandom numbers (The midsquare method; the midproduct method; the linear congruential method) 402
2. Alternative tests of randomness
 Test 10b: The frequency test 407
 Test 10c: The gap test .. 409
 Test 10d: The poker test .. 413
 Test 10e: The maximum test 413
 Test 10f: The coupon collector’s test 414
 Test 10g: The mean square successive difference test (for serial randomness) .. 417
Additional tests of randomness (Autocorrelation; The serial test; The d^2 square test of random numbers; Tests of trend analysis/time series analysis) .. 419

Inferential Statistical Tests Employed with Two Independent Samples (and Related Measures of Association/Correlation) 425

Test 11: The t Test for Two Independent Samples 427
I. Hypothesis Evaluated with Test and Relevant Background Information 427
II. Example .. 427
III. Null versus Alternative Hypotheses 428
IV. Test Computations .. 428
V. Interpretation of the Test Results 431
VI. Additional Analytical Procedures for the t Test for Two Independent Samples and/or Related Tests ... 432
 1. The equation for the t test for two independent samples when a value
 for a difference other than zero is stated in the null hypothesis 432
 2. Test 11a: Hartley’s F_{max} test for homogeneity of variance/ F test
 for two population variances: Evaluation of the homogeneity of variance assumption of the t test for two independent samples 434
 3. Computation of the power of the t test for two independent samples
 and the application of Test 11b: Cohen’s d index 439
 4. Measures of magnitude of treatment effect for the t test for two independent samples: Omega squared (Test 11c) and Eta squared
 (Test 11d) .. 446
 5. Computation of a confidence interval for the t test for two independent samples ... 448
 6. Test 11e: The z test for two independent samples 450
VII. Additional Discussion of the t Test for Two Independent Samples 452
1. Unequal sample sizes .. 452
2. Robustness of the t test for two independent samples 453
<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Outliers (Box-and-whisker plot criteria; Standard deviation score criteria; Test 11f: Median absolute deviation test for identifying outliers and Test 11g: Extreme Studentized deviate test for identifying outliers; trimming data; Winsorization) and data transformation</td>
</tr>
<tr>
<td>4.</td>
<td>Missing data</td>
</tr>
<tr>
<td>5.</td>
<td>Clinical trials</td>
</tr>
<tr>
<td>6.</td>
<td>Tests of equivalence (Test 11h: The Westlake–Schuirmann test of equivalence of two independent treatments (and procedure for computing sample size in reference to the power of the test) and Test 11i: Tryon's test of equivalence of two independent treatments)</td>
</tr>
<tr>
<td>7.</td>
<td>Hotelling's T^2</td>
</tr>
<tr>
<td>VIII.</td>
<td>Additional Examples Illustrating the Use of the t Test for Two Independent Samples</td>
</tr>
<tr>
<td>Test 12:</td>
<td>The Mann–Whitney U Test</td>
</tr>
<tr>
<td>I.</td>
<td>Hypothesis Evaluated with Test and Relevant Background Information</td>
</tr>
<tr>
<td>II.</td>
<td>Example</td>
</tr>
<tr>
<td>III.</td>
<td>Null versus Alternative Hypotheses</td>
</tr>
<tr>
<td>IV.</td>
<td>Test Computations</td>
</tr>
<tr>
<td>V.</td>
<td>Interpretation of the Test Results</td>
</tr>
<tr>
<td>VI.</td>
<td>Additional Analytical Procedures for the Mann–Whitney U Test and/or Related Tests</td>
</tr>
<tr>
<td>1.</td>
<td>The normal approximation of the Mann–Whitney U statistic for large sample sizes</td>
</tr>
<tr>
<td>2.</td>
<td>The correction for continuity for the normal approximation of the Mann–Whitney U test</td>
</tr>
<tr>
<td>3.</td>
<td>Tie correction for the normal approximation of the Mann–Whitney U statistic</td>
</tr>
<tr>
<td>4.</td>
<td>Computation of a confidence interval for a difference between the medians of two independent populations</td>
</tr>
<tr>
<td>VII.</td>
<td>Additional Discussion of the Mann–Whitney U Test</td>
</tr>
<tr>
<td>1.</td>
<td>Power-efficiency of the Mann–Whitney U test</td>
</tr>
<tr>
<td>2.</td>
<td>Equivalency of the normal approximation of the Mann–Whitney U test and the t test for two independent samples with rank-orders</td>
</tr>
<tr>
<td>3.</td>
<td>Alternative nonparametric rank-order procedures for evaluating a design involving two independent samples</td>
</tr>
<tr>
<td>VIII.</td>
<td>Additional Examples Illustrating the Use of the Mann–Whitney U Test</td>
</tr>
<tr>
<td>IX.</td>
<td>Addendum</td>
</tr>
<tr>
<td>1.</td>
<td>Computer-intensive tests (Randomization and permutation tests: Test 12a: The randomization test for two independent samples; Test 12b: The bootstrap; Test 12c: The jackknife; Final comments on computer-intensive procedures)</td>
</tr>
<tr>
<td>2.</td>
<td>Survival analysis (Test 12d: Kaplan–Meier estimate)</td>
</tr>
<tr>
<td>3.</td>
<td>Procedures for evaluating censored data in a design involving two independent samples (Permutation test based on the median for censored data, Gehan's test for censored data (Test 12e), and the log-rank test (Test 12f))</td>
</tr>
</tbody>
</table>
Test 13: The Kolmogorov–Smirnov Test for Two Independent Samples

I. Hypothesis Evaluated with Test and Relevant Background Information
II. Example
III. Null versus Alternative Hypotheses
IV. Test Computations
V. Interpretation of the Test Results
VI. Additional Analytical Procedures for the Kolmogorov–Smirnov test for two independent samples and/or Related Tests
 1. Graphical method for computing the Kolmogorov–Smirnov test statistic
 2. Computing sample confidence intervals for the Kolmogorov–Smirnov test for two independent samples
 3. Large sample chi-square approximation for a one-tailed analysis of the Kolmogorov–Smirnov test for two independent samples
VII. Additional Discussion of the Kolmogorov–Smirnov Test for Two Independent Samples
 1. Additional comments on the Kolmogorov–Smirnov test for two independent samples
VIII. Additional Examples Illustrating the Use of the Kolmogorov–Smirnov Test for Two Independent Samples

Test 14: The Siegel–Tukey Test for Equal Variability

I. Hypothesis Evaluated with Test and Relevant Background Information
II. Example
III. Null versus Alternative Hypotheses
IV. Test Computations
V. Interpretation of the Test Results
VI. Additional Analytical Procedures for the Siegel–Tukey Test for Equal Variability and/or Related Tests
 1. The normal approximation of the Siegel–Tukey test statistic for large sample sizes
 2. The correction for continuity for the normal approximation of the Siegel–Tukey test for equal variability
 3. Tie correction for the normal approximation of the Siegel–Tukey test statistic
 4. Adjustment of scores for the Siegel–Tukey test for equal variability when \(\theta_1 \neq \theta_2 \)
VII. Additional Discussion of the Siegel–Tukey Test for Equal Variability
 1. Analysis of the homogeneity of variance hypothesis for the same set of data with both a parametric and nonparametric test, and the power-efficiency of the Siegel–Tukey Test for Equal Variability
 2. Alternative nonparametric tests of dispersion
VIII. Additional Examples Illustrating the Use of the Siegel–Tukey Test for Equal Variability

Test 15: The Moses Test for Equal Variability

I. Hypothesis Evaluated with Test and Relevant Background Information
II. Example
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III. Null versus Alternative Hypotheses</td>
<td>606</td>
</tr>
<tr>
<td>IV. Test Computations</td>
<td>608</td>
</tr>
<tr>
<td>V. Interpretation of the Test Results</td>
<td>610</td>
</tr>
<tr>
<td>VI. Additional Analytical Procedures for the Moses Test for Equal</td>
<td>611</td>
</tr>
<tr>
<td>Variability and/or Related Tests</td>
<td></td>
</tr>
<tr>
<td>1. The normal approximation of the Moses test statistic for large</td>
<td></td>
</tr>
<tr>
<td>sample sizes</td>
<td></td>
</tr>
<tr>
<td>VII. Additional Discussion of the Moses Test for Equal</td>
<td>612</td>
</tr>
<tr>
<td>1. Power-efficiency of the Moses Test for equal variability</td>
<td></td>
</tr>
<tr>
<td>2. Issue of repetitive resampling</td>
<td></td>
</tr>
<tr>
<td>3. Alternative nonparametric tests of dispersion</td>
<td></td>
</tr>
<tr>
<td>VIII. Additional Examples Illustrating the Use of the Moses Test for</td>
<td>613</td>
</tr>
<tr>
<td>Equal Variability</td>
<td></td>
</tr>
<tr>
<td>Test 16: The Chi-Square Test for $r \times c$ Tables</td>
<td>619</td>
</tr>
<tr>
<td>Test 16a: The Chi-Square Test for Homogeneity; Test 16b: The Chi-Square</td>
<td></td>
</tr>
<tr>
<td>Test of Independence (employed with a single sample)</td>
<td></td>
</tr>
<tr>
<td>I. Hypothesis Evaluated with Test and Relevant Background Information</td>
<td>619</td>
</tr>
<tr>
<td>II. Examples</td>
<td>621</td>
</tr>
<tr>
<td>III. Null versus Alternative Hypotheses</td>
<td>622</td>
</tr>
<tr>
<td>IV. Test Computations</td>
<td>625</td>
</tr>
<tr>
<td>V. Interpretation of the Test Results</td>
<td>626</td>
</tr>
<tr>
<td>VI. Additional Analytical Procedures for the Chi-Square Test for $r \times c$</td>
<td>628</td>
</tr>
<tr>
<td>Tables and/or Related Tests</td>
<td></td>
</tr>
<tr>
<td>1. Yates' correction for continuity</td>
<td>628</td>
</tr>
<tr>
<td>2. Quick computational equation for a 2×2 table</td>
<td>629</td>
</tr>
<tr>
<td>3. Evaluation of a directional alternative hypothesis in the case of</td>
<td></td>
</tr>
<tr>
<td>a 2×2 contingency table</td>
<td>630</td>
</tr>
<tr>
<td>4. Test 16c: The Fisher exact test</td>
<td>631</td>
</tr>
<tr>
<td>5. Test 16d: The z test for two independent proportions</td>
<td>637</td>
</tr>
<tr>
<td>(and computation of sample size in reference to power)</td>
<td></td>
</tr>
<tr>
<td>6. Computation of a confidence interval for a difference between two</td>
<td>643</td>
</tr>
<tr>
<td>proportions</td>
<td></td>
</tr>
<tr>
<td>7. Test 16d: The median test for independent samples</td>
<td>645</td>
</tr>
<tr>
<td>8. Extension of the chi-square test for $r \times c$ tables to</td>
<td>647</td>
</tr>
<tr>
<td>contingency tables involving more than two rows and/or columns,</td>
<td></td>
</tr>
<tr>
<td>and associated comparison procedures</td>
<td></td>
</tr>
<tr>
<td>9. The analysis of standardized residuals</td>
<td>653</td>
</tr>
<tr>
<td>10. Sources for computing the power of the chi-square test</td>
<td>655</td>
</tr>
<tr>
<td>for $r \times c$ tables</td>
<td></td>
</tr>
<tr>
<td>11. Measures of association for $r \times c$ contingency tables</td>
<td>655</td>
</tr>
<tr>
<td>Test 16f: The contingency coefficient</td>
<td>657</td>
</tr>
<tr>
<td>Test 16g: The phi coefficient</td>
<td>659</td>
</tr>
<tr>
<td>Test 16h: Cramér's phi coefficient</td>
<td>660</td>
</tr>
<tr>
<td>Test 16i: Yule's Q</td>
<td>661</td>
</tr>
<tr>
<td>Test 16j: The odds ratio (and the concept of relative risk)</td>
<td></td>
</tr>
<tr>
<td>(and Test 16j-a: Test of significance for an odds ratio and</td>
<td></td>
</tr>
<tr>
<td>computation of a confidence interval for an odds ratio)</td>
<td>662</td>
</tr>
<tr>
<td>Test 16k: Cohen's kappa (and computation of a confidence</td>
<td></td>
</tr>
<tr>
<td>interval for kappa, Test 16k-a: Test of significance for</td>
<td></td>
</tr>
</tbody>
</table>
Cohen's kappa, and Test 16k-b: Test of significance for
two independent values of Cohen’s kappa) 669

12. Combining the results of multiple 2 × 2 contingency tables: 673
Heterogeneity chi-square analysis for a 2 × 2
contingency table ... 673

Test 16l: The Mantel–Haenszel analysis (Test 16l-a: Test
of homogeneity of odds ratios for Mantel–Haenszel
analysis, Test 16l-b: Summary odds ratio for Mantel–
Haenszel analysis, and Test 16l-c: Mantel–Haenszel test
of association) .. 676

VII. Additional Discussion of the Chi-Square Test for
r × c Tables .. 688
1. Equivalency of the chi-square test for r × c tables when c = 2 with the
t test for two independent samples (when r = 2) and the single-factor
between-subjects analysis of variance (when r ≥ 2) 688
2. Test of equivalence for two independent proportions: Test 16m: The
Westlake–Schuirmann test of equivalence of two independent
proportions (and procedure for computing sample size in reference
to the power of the test) 688
3. Test 16n: The log-likelihood ratio 698
4. Simpson’s Paradox .. 700
5. Analysis of multidimensional contingency tables through use of
a chi-square analysis 702
6. Test 16o: Analysis of multidimensional contingency tables
with log-linear analysis 713

VIII. Additional Examples Illustrating the Use of the Chi-Square Test for
r × c Tables .. 727

Inferential Statistical Tests Employed with Two Dependent
Samples (and Related Measures of Association/Correlation) 741

Test 17: The t Test for Two Dependent Samples 743

I. Hypothesis Evaluated with Test and Relevant Background Information 743
II. Example .. 744
III. Null versus Alternative Hypotheses 744
IV. Test Computations ... 745
V. Interpretation of the Test Results 747
VI. Additional Analytical Procedures for the t Test for Two Dependent
Samples and/or Related Tests 748
1. Alternative equation for the t test for two dependent samples 748
2. The equation for the t test for two dependent samples when a value for
a difference other than zero is stated in the null hypothesis 752
3. Test 17a: The t test for homogeneity of variance for two depen-
dent samples: Evaluation of the homogeneity of variance assumption
of the t test for two dependent samples 752
4. Computation of the power of the t test for two dependent samples and
the application of Test 17b: Cohen's d index 755
5. Measure of magnitude of treatment effect for the t test for two
dependent samples: Omega squared (Test 17c) 761
6. Computation of a confidence interval for the t test for two dependent samples ... 763
7. Test 17d: Sandler's A test ... 764
8. Test 17e: The z test for two dependent samples 765

VII. Additional Discussion of the t Test for Two Dependent Samples 768
1. The use of matched subjects in a dependent samples design 768
2. Relative power of the t test for two dependent samples and the t test for two independent samples .. 771
3. Counterbalancing and order effects .. 772
4. Analysis of a one-group pretest-posttest design with the t test for two dependent samples ... 774
5. Tests of equivalence: Test 17f: The Westlake–Schuirmann test of equivalence of two dependent treatments (and procedure for computing sample size in reference to the power of the test) and Test 17g: Tryon's test of equivalence of two dependent treatments 776

VIII. Additional Example Illustrating the Use of the t Test for Two Dependent Samples ... 785

Test 18: The Wilcoxon Matched-Pairs Signed-Ranks Test 791
I. Hypothesis Evaluated with Test and Relevant Background Information 791
II. Example .. 792
III. Null versus Alternative Hypotheses .. 792
IV. Test Computations .. 793
V. Interpretation of the Test Results ... 794
VI. Additional Analytical Procedures for the Wilcoxon Matched-Pairs Signed-Ranks Test and/or Related Tests ... 796
1. The normal approximation of the Wilcoxon T statistic for large sample sizes ... 796
2. The correction for continuity for the normal approximation of the Wilcoxon matched-pairs signed-ranks test 797
3. Tie correction for the normal approximation of the Wilcoxon test statistic ... 798
4. Computation of a confidence interval for a median difference between two dependent populations 799
VII. Additional Discussion of the Wilcoxon Matched-Pairs Signed-Ranks Test ... 801
1. Power-efficiency of the Wilcoxon matched-pairs signed-ranks test 801
2. Probability of superiority as a measure of effect size 801
3. Alternative nonparametric procedures for evaluating a design involving two dependent samples 801
VIII. Additional Examples Illustrating the Use of the Wilcoxon Matched-Pairs Signed-Ranks Test 802

Test 19: The Binomial Sign Test for Two Dependent Samples 805
I. Hypothesis Evaluated with Test and Relevant Background Information 805
II. Example .. 806
III. Null versus Alternative Hypotheses .. 806
IV. Test Computations .. 807
V. Interpretation of the Test Results ... 809
VI. Additional Analytical Procedures for the Binomial Sign Test for Two Dependent Samples and/or Related Tests .. 810
1. The normal approximation of the binomial sign test for two dependent samples with and without a correction for continuity 810
2. Computation of a confidence interval for the binomial sign test for two dependent samples .. 813
3. Sources for computing the power of the binomial sign test for two dependent samples, and comments on asymptotic relative efficiency of the test ... 814

VII. Additional Discussion of the Binomial Sign Test for Two Dependent Samples .. 815
1. The problem of an excessive number of zero difference scores 815
2. Equivalency of the binomial sign test for two dependent samples and the Friedman two-way analysis variance by ranks when $k = 2$ 815

VIII. Additional Examples Illustrating the Use of the Binomial Sign Test for Two Dependent Samples .. 815

Test 20: The McNemar Test ... 817
I. Hypothesis Evaluated with Test and Relevant Background Information .. 817
II. Examples ... 818
III. Null versus Alternative Hypotheses ... 820
IV. Test Computations ... 822
V. Interpretation of the Test Results .. 822
VI. Additional Analytical Procedures for the McNemar Test and/or Related Tests ... 823
1. Alternative equation for the McNemar test statistic based on the normal distribution ... 823
2. The correction for continuity for the McNemar test 824
3. Computation of the exact binomial probability for the McNemar test model with a small sample size ... 825
4. Computation of the power of the McNemar test 827
5. Computation of a confidence interval for the McNemar test 828
6. Computation of an odds ratio for the McNemar test 829
7. Additional analytical procedures for the McNemar test 830
8. Test 20a: The Gart test for order effects 830

VII. Additional Discussion of the McNemar Test 838
1. Alternative format for the McNemar test summary table and modified test equation ... 838
2. The effect of disregarding matching .. 839
3. Alternative nonparametric procedures for evaluating a design with two dependent samples involving categorical data 840
4. Test of equivalence for two independent proportions: Test 20b: The Westlake–Schuirmann test of equivalence of two dependent proportions ... 840

VIII. Additional Examples Illustrating the Use of the McNemar Test ... 850
IX. Addendum .. 852

Extension of the McNemar test model beyond 2×2 contingency tables ... 852
1. Test 20c: The Bowker test of internal symmetry 852
2. Test 20d: The Stuart–Maxwell test of marginal homogeneity 856
Inferential Statistical Tests Employed with Two or More Independent Samples (and Related Measures of Association/Correlation) 865

Test 21: The Single-Factor Between-Subjects Analysis of Variance 867

I. Hypothesis Evaluated with Test and Relevant Background Information 867

II. Example ... 868

III. Null versus Alternative Hypotheses ... 868

IV. Test Computations ... 869

V. Interpretation of the Test Results ... 873

VI. Additional Analytical Procedures for the Single-Factor Between-Subjects Analysis of Variance and/or Related Tests 874

1. Comparisons following computation of the omnibus F value for the single-factor between-subjects analysis of variance (Planned versus unplanned comparisons (including simple versus complex comparisons); Linear contrasts; Orthogonal comparisons; Test 21a: Multiple t tests/Fisher's LSD test; Test 21b: The Bonferroni–Dunn test; Test 21c: Tukey's HSD test; Test 21d: The Newman–Keuls test; Test 21e: The Scheffé test; Test 21f: The Dunnett test; Additional discussion of comparison procedures and final recommendations; The computation of a confidence interval for a comparison) ... 874

2. Comparing the means of three or more groups when $k \geq 4$ 905

3. Evaluation of the homogeneity of variance assumption of the single-factor between-subjects analysis of variance (Test 11a: Hartley's F_{max} test for homogeneity of variance, Test 21g: The Levene Test for homogeneity of variance, Test 21h: The Brown–Forsythe test for homogeneity of variance) ... 906

4. Computation of the power of the single-factor between-subjects analysis of variance ... 913

5. Measures of magnitude of treatment effect for the single-factor between-subjects analysis of variance: Omega squared (Test 21i), Eta squared (Test 21j), and Cohen's f index (Test 21k) 916

6. Computation of a confidence interval for the mean of a treatment population ... 920

7. Trend analysis ... 922

VII. Additional Discussion of the Single-Factor Between-Subjects Analysis of Variance ... 934

1. Theoretical rationale underlying the single-factor between-subjects analysis of variance ... 934

2. Definitional equations for the single-factor between-subjects analysis of variance ... 936

3. Equivalency of the single-factor between-subjects analysis of variance and the t test for two independent samples when $k = 2$ 938

4. Robustness of the single-factor between-subjects analysis of variance ... 939

5. Equivalency of the single-factor between-subjects analysis of variance and the t test for two independent samples with the chi-square test for $r \times c$ tables when $c = 2$... 939
6. The general linear model .. 943
7. Fixed-effects versus random-effects models for the single-factor
between-subjects analysis of variance 944
8. Multivariate analysis of variance (MANOVA) 944
VIII. Additional Examples Illustrating the Use of the Single-Factor Between-
Subjects Analysis of Variance ... 945
IX. Addendum ... 946
 1. Test 21: The Single-Factor Between-Subjects Analysis of
 Covariance .. 946

Test 22: The Kruskal–Wallis One-Way Analysis of Variance by Ranks 981
 I. Hypothesis Evaluated with Test and Relevant Background Information 981
 II. Example .. 982
 III. Null versus Alternative Hypotheses 983
 IV. Test Computations ... 983
 V. Interpretation of the Test Results 985
 VI. Additional Analytical Procedures for the Kruskal–Wallis One-Way
 Analysis of Variance by Ranks and/or Related Tests 985
 1. Tie correction for the Kruskal–Wallis one-way analysis of variance by
 ranks .. 985
 2. Pairwise comparisons following computation of the test statistic for
 the Kruskal–Wallis one-way analysis of variance by ranks 986
 VII. Additional Discussion of the Kruskal–Wallis One-Way Analysis of
 Variance by Ranks ... 990
 1. Exact tables of the Kruskal–Wallis distribution 990
 2. Equivalency of the Kruskal–Wallis one-way analysis of
 variance by ranks and the Mann–Whitney U test when \(k = 2 \) 990
 3. Power-efficiency of the Kruskal–Wallis one-way analysis of
 variance by ranks ... 991
 4. Alternative nonparametric rank-order procedures for evaluating a
 design involving \(k \) independent samples 991
 VIII. Additional Examples Illustrating the Use of the Kruskal–Wallis One-
 Way Analysis of Variance by Ranks 992
 IX. Addendum .. 993
 1. Test 22a: The Jonckheere-Terpstra Test for Ordered
 Alternatives ... 993

Test 23: The Van der Waerden Normal-Scores Test for \(k \) Independent
Samples ... 1007
 I. Hypothesis Evaluated with Test and Relevant Background Information 1007
 II. Example .. 1008
 III. Null versus Alternative Hypotheses 1008
 IV. Test Computations ... 1009
 V. Interpretation of the Test Results 1011
 VI. Additional Analytical Procedures for the van der Waerden Normal-
 Scores Test for \(k \) Independent Samples and/or Related Tests 1012
 1. Pairwise comparisons following computation of the test statistic for
 the van der Waerden normal-scores test for \(k \) independent samples 1012
 VII. Additional Discussion of the van der Waerden Normal-Scores Test for
 \(k \) Independent Samples .. 1015
I. Alternative normal-scores tests 1015

VIII. Additional Examples Illustrating the Use of the van der Waerden Normal-Scores Test for k Independent Samples 1015

Inferential Statistical Tests Employed with Two or More Dependent Samples (and Related Measures of Association/Correlation) 1021

Test 24: The Single-Factor Within-Subjects Analysis of Variance 1023

I. Hypothesis Evaluated with Test and Relevant Background Information 1023
II. Example ... 1025
III. Null versus Alternative Hypotheses 1025
IV. Test Computations ... 1025
V. Interpretation of the Test Results .. 1030
VI. Additional Analytical Procedures for the Single-Factor Within-Subjects Analysis of Variance and/or Related Tests .. 1031
 1. Comparisons following computation of the omnibus F value for the single-factor within-subjects analysis of variance (Test 24a: Multiple t tests/Fisher's LSD test; Test 24b: The Bonferroni–Dunn test; Test 24c: Tukey's HSD test; Test 24d: The Newman–Keuls test; Test 24e: The Scheffé test; Test 24f: The Dunnett test; The computation of a confidence interval for a comparison; Alternative methodology for computing MS_{res} for a comparison) .. 1031
 2. Comparing the means of three or more conditions when $k \geq 4$ 1039
 3. Evaluation of the sphericity assumption underlying the single-factor within-subjects analysis of variance .. 1041
 4. Computation of the power of the single-factor within-subjects analysis of variance .. 1047
 5. Measures of magnitude of treatment effect for the single-factor within-subjects analysis of variance: Omega squared (Test 24g) and Cohen's f index (Test 24h) .. 1049
 6. Computation of a confidence interval for the mean of a treatment population .. 1051
 7. Test 24i: The intraclass correlation coefficient 1053

VII. Additional Discussion of the Single-Factor Within-Subjects Analysis of Variance .. 1055
 1. Theoretical rationale underlying the single-factor within-subjects analysis of variance .. 1055
 2. Definitional equations for the single-factor within-subjects analysis of variance .. 1058
 3. Relative power of the single-factor within-subjects analysis of variance and the single-factor between-subjects analysis of variance 1061
 4. Equivalency of the single-factor within-subjects analysis of variance and the t test for two dependent samples when $k = 2$ 1062
 5. The Latin square design .. 1063

VIII. Additional Examples Illustrating the Use of the Single-Factor Within-Subjects Analysis of Variance .. 1065
Test 25: The Friedman Two-Way Analysis of Variance by Ranks

I. Hypothesis Evaluated with Test and Relevant Background Information
II. Example
III. Null versus Alternative Hypotheses
IV. Test Computations
V. Interpretation of the Test Results
VI. Additional Analytical Procedures for the Friedman Two-Way Analysis
 Variance by Ranks and/or Related Tests
 1. Tie correction for the Friedman two-way analysis variance by ranks
 2. Pairwise comparisons following computation of the test statistic for the Friedman two-way analysis of variance by ranks
VII. Additional Discussion of the Friedman Two-Way Analysis of Variance by Ranks
 1. Exact tables of the Friedman distribution
 2. Equivalency of the Friedman two-way analysis of variance by ranks and the binomial sign test for two dependent samples when \(k = 2 \)
 3. Power-efficiency of the Friedman two-way analysis of variance by ranks
 4. Alternative nonparametric rank-order procedures for evaluating a design involving \(k \) dependent samples
 5. Relationship between the Friedman two-way analysis of variance by ranks and Kendall's coefficient of concordance
VIII. Additional Examples Illustrating the Use of the Friedman Two-Way Analysis of Variance by Ranks
IX. Addendum
 1. Test 25a: The Page Test for Ordered Alternatives

Test 26: The Cochran Q Test

I. Hypothesis Evaluated with Test and Relevant Background Information
II. Example
III. Null versus Alternative Hypotheses
IV. Test Computations
V. Interpretation of the Test Results
VI. Additional Analytical Procedures for the Cochran Q Test and/or Related Tests
 1. Pairwise comparisons following computation of the test statistic for the Cochran Q test
VII. Additional Discussion of the Cochran Q Test
 1. Issues relating to subjects who obtain the same score under all of the experimental conditions
 2. Equivalency of the Cochran Q test and the McNemar test when \(k = 2 \)
 3. Alternative nonparametric procedures with categorical data for evaluating a design involving \(k \) dependent samples
VIII. Additional Examples Illustrating the Use of the Cochran Q Test

Inferential Statistical Test Employed with a Factorial Design
(and Related Measures of Association/Correlation)
Test 27: The Between-Subjects Factorial Analysis of Variance

I. Hypothesis Evaluated with Test and Relevant Background Information
II. Example
III. Null versus Alternative Hypotheses
IV. Test Computations
V. Interpretation of the Test Results
VI. Additional Analytical Procedures for the Between-Subjects Factorial Analysis of Variance and/or Related Tests
 1. Comparisons following computation of the F values for the between-subjects factorial analysis of variance (Test 27a: Multiple t tests/Fisher's LSD test; Test 27b: The Bonferroni-Dunn test; Test 27c: Tukey's HSD test; Test 27d: The Newman-Keuls test; Test 27e: The Scheffé test; Test 27f: The Dunnett test; Comparisons between the marginal means; Evaluation of an omnibus hypothesis involving more than two marginal means; Comparisons between specific groups that are a combination of both factors; The computation of a confidence interval for a comparison; Analysis of simple effects)
 2. Evaluation of the homogeneity of variance assumption of the between-subjects factorial analysis of variance
 3. Computation of the power of the between-subjects factorial analysis of variance
 4. Measures of magnitude of treatment effect for the between-subjects factorial analysis of variance: Omega squared (Test 27g) and Cohen's f index (Test 27h)
 5. Computation of a confidence interval for the mean of a population represented by a group
VII. Additional Discussion of the Between-Subjects Factorial Analysis of Variance
 1. Theoretical rationale underlying the between-subjects factorial analysis of variance
 2. Definitional equations for the between-subjects factorial analysis of variance
 3. Unequal sample sizes
 4. The randomized-blocks design
 5. Additional comments on the between-subjects factorial analysis of variance (Fixed-effects versus random-effects versus mixed-effects models; Nested factors/hierarchical designs and designs involving more than two factors; Screening designs)
VIII. Additional Examples Illustrating the Use of the Between-Subjects Factorial Analysis of Variance
IX. Addendum
 1. Test 27i: The factorial analysis of variance for a mixed design
 Analysis of a crossover design with a factorial analysis of variance for a mixed design
 2. Test 27j: Analysis of variance for a Latin square design
3. Test 27k: The within-subjects factorial analysis of variance ... 1203
4. Analysis of higher order factorial designs ... 1208

Measures of Association/Correlation ... 1219

Test 28: The Pearson Product-Moment Correlation Coefficient 1221
I. Hypothesis Evaluated with Test and Relevant Background Information 1221
II. Example ... 1225
III. Null versus Alternative Hypotheses ... 1225
IV. Test Computations ... 1226
V. Interpretation of the Test Results (Test 28a: Test of significance for a Pearson product-moment correlation coefficient; The coefficient of determination) 1228
VI. Additional Analytical Procedures for the Pearson Product-Moment
Correlation Coefficient and/or Related Tests ... 1231
1. Derivation of a regression line .. 1231
2. The standard error of estimate ... 1240
3. Computation of a confidence interval for the value of the criterion variable .. 1241
4. Computation of a confidence interval for a Pearson product-moment correlation coefficient .. 1243
5. Test 28b: Test for evaluating the hypothesis that the true population correlation is a specific value other than zero .. 1244
6. Computation of power for the Pearson product-moment correlation coefficient .. 1245
7. Test 28c: Test for evaluating a hypothesis on whether there is a significant difference between two independent correlations ... 1247
8. Test 28d: Test for evaluating a hypothesis on whether k independent correlations are homogeneous ... 1249
9. Test 28e: Test for evaluating the null hypothesis $H_0: \rho_{xz} = \rho_{yz}$.. 1250
10. Tests for evaluating a hypothesis regarding one or more regression coefficients (Test 28f: Test for evaluating the null hypothesis $H_0: \beta = 0$; Test 28g: Test for evaluating the null hypothesis $H_0: \beta_1 = \beta_2$) .. 1252
11. Additional correlational procedures ... 1254

VII. Additional Discussion of the Pearson Product-Moment Correlation Coefficient 1255
1. The definitional equation for the Pearson product-moment correlation coefficient .. 1255
2. Covariance .. 1256
3. The homoscedasticity assumption of the Pearson product-moment correlation coefficient .. 1257
4. Residuals, analysis of variance for regression analysis and regression diagnostics .. 1258
5. Autocorrelation (and Test 28h: Durbin–Watson test) .. 1269
6. The phi coefficient as a special case of the Pearson product-moment correlation coefficient .. 1284
7. Ecological correlation ... 1285
8. Cross-lagged panel and regression-discontinuity designs 1288

VIII. Additional Examples Illustrating the Use of the Pearson Product-Moment Correlation Coefficient ... 1295
IX. Addendum ... 1295
 1. Bivariate measures of correlation that are related to the Pearson product-
 moment correlation coefficient (Test 28i: The point-biserial
 correlation coefficient (and Test 28i-a: Test of significance for a
 point-biserial correlation coefficient); Test 28j: The biserial
 correlation coefficient (and Test 28j-a: Test of significance for a
 biserial correlation coefficient); Test 28k: The tetrachoric
 correlation coefficient (and Test 28k-a: Test of significance for a
 tetrachoric correlation coefficient)) 1296
 2. Meta-analysis and related topics (Measures of effect size; Meta-analytic
 procedures (Test 28l: Procedure for comparing k studies with
 respect to significance level; Test 28m: The Stouffer procedure for
 obtaining a combined significance level (p value) for k studies; The
 file drawer problem; Test 28n: Procedure for comparing k studies
 with respect to effect size; Test 28o: Procedure for obtaining a
 combined effect size for k studies); Alternative meta-analytic
 procedures; Practical implications of magnitude of effect size value;
 Test 28p: Binomial effect size display; The significance test
 controversy; The minimum-effect hypothesis testing model) 1306

Test 29: Spearman’s Rank-Order Correlation Coefficient 1353
 I. Hypothesis Evaluated with Test and Relevant Background Information ... 1353
 II. Example ... 1355
 III. Null versus Alternative Hypotheses 1355
 IV. Test Computations ... 1356
 V. Interpretation of the Test Results (Test 29a: Test of significance for
 Spearman’s rank-order correlation coefficient) 1357
 VI. Additional Analytical Procedures for Spearman’s Rank-Order
 Correlation Coefficient and/or Related Tests 1359
 1. Tie correction for Spearman’s rank-order correlation coefficient 1359
 2. Spearman’s rank-order correlation coefficient as a special case of the
 Pearson product-moment correlation coefficient 1361
 3. Regression analysis and Spearman’s rank-order correlation
 coefficient ... 1362
 4. Partial rank correlation .. 1363
 5. Use of Fisher’s z_r transformation with Spearman’s rank-
 order correlation coefficient .. 1364
 VII. Additional Discussion of Spearman’s Rank-Order Correlation
 Coefficient ... 1364
 1. The relationship between Spearman’s rank-order correlation coefficient,
 Kendall’s coefficient of concordance, and the Friedman two-way
 analysis of variance by ranks .. 1364
 2. Power efficiency of Spearman’s rank-order correlation coefficient 1367
 3. Brief discussion of Kendall’s tau: An alternative measure of association
 for two sets of ranks ... 1367
 4. Weighted rank/top-down correlation .. 1367
 VIII. Additional Examples Illustrating the Use of the Spearman’s Rank-Order
 Correlation Coefficient .. 1368
Test 30: Kendall’s Tau .. 1371
I. Hypothesis Evaluated with Test and Relevant Background Information ... 1371
II. Example ... 1373
III. Null versus Alternative Hypotheses 1373
IV. Test Computations .. 1374
V. Interpretation of the Test Results (Test 30a: Test of significance for Kendall’s tau) .. 1376
VI. Additional Analytical Procedures for Kendall’s Tau and/or Related Tests .. 1379
 1. Tie correction for Kendall’s tau .. 1379
 2. Regression analysis and Kendall’s tau 1382
 3. Partial rank correlation .. 1382
 4. Sources for computing a confidence interval for Kendall’s tau .. 1382
VII. Additional Discussion of Kendall’s Tau 1382
 1. Power efficiency of Kendall’s tau 1382
 2. Kendall’s coefficient of agreement 1382
VIII. Additional Examples Illustrating the Use of Kendall’s Tau 1382

Test 31: Kendall’s Coefficient of Concordance 1387
I. Hypothesis Evaluated with Test and Relevant Background Information ... 1387
II. Example ... 1388
III. Null versus Alternative Hypotheses 1388
IV. Test Computations .. 1389
V. Interpretation of the Test Results (Test 31a: Test of significance for Kendall’s coefficient of concordance) 1390
VI. Additional Analytical Procedures for Kendall’s Coefficient of Concordance and/or Related Tests 1391
 1. Tie correction for Kendall’s coefficient of concordance 1391
VII. Additional Discussion of Kendall’s Coefficient of Concordance 1393
 1. Relationship between Kendall’s coefficient of concordance and Spearman’s rank-order correlation coefficient 1393
 2. Relationship between Kendall’s coefficient of concordance and the Friedman two-way analysis of variance by ranks 1394
 3. Weighted rank/top-down concordance 1396
 4. Kendall’s coefficient of concordance versus the intraclass correlation coefficient .. 1396
VIII. Additional Examples Illustrating the Use of Kendall’s Coefficient of Concordance .. 1398

Test 32: Goodman and Kruskal’s Gamma 1403
I. Hypothesis Evaluated with Test and Relevant Background Information ... 1403
II. Example ... 1404
III. Null versus Alternative Hypotheses 1405
IV. Test Computations .. 1406
V. Interpretation of the Test Results (Test 32a: Test of significance for Goodman and Kruskal’s gamma) 1409
VI. Additional Analytical Procedures for Goodman and Kruskal’s Gamma and/or Related Tests 1410
1. The computation of a confidence interval for the value of Goodman and
Kruskal's gamma .. 1410
2. Test 32b: Test for evaluating the null hypothesis $H_0: \gamma = \gamma_1$ 1411
3. Sources for computing a partial correlation coefficient for Goodman and
Kruskal’s gamma ... 1412

VII. Additional Discussion of Goodman and Kruskal’s Gamma 1412
1. Relationship between Goodman and Kruskal's gamma and Yule’s Q ... 1412
2. Somers’ delta as an alternative measure of association for an ordered
contingency table .. 1412

VIII. Additional Examples Illustrating the Use of Goodman and Kruskal’s
Gamma ... 1413

Multivariate Statistical Analysis .. 1417

Matrix Algebra and Multivariate Analysis 1419

I. Introductory Comments on Multivariate Statistical Analysis 1419
II. Introduction to Matrix Algebra 1420

Test 33: Multivariate Regression 1433

I. Hypothesis Evaluated with Test and Relevant Background Information 1433
II. Examples .. 1439
III. Null versus Alternative Hypotheses 1441

IV/V. Test Computations and Interpretation of the Test Results
Test computations and interpretation of results for Example 33.1
(Computation of the multiple correlation coefficient; The coefficient
of multiple determination; Test of significance for a multiple correlation
coefficient; The multiple regression equation; The standard error of
multiple estimate; Computation of a confidence interval for $\hat{\beta}$; Evaluation
of the relative importance of the predictor variables; Evaluating
the significance of a regression coefficient; Computation of a
confidence interval for a regression coefficient; Analysis of variance
for multiple regression; Semipartial and partial correlation (Test 33a:
Computation of a semipartial correlation coefficient; Test of
significance for a semipartial correlation coefficient; Test 33b:
Computation of a partial correlation coefficient; Test of significance
for a partial correlation coefficient) .. 1442
Test computations and interpretation of results for Example
33.2 with SPSS .. 1459

VI. Additional Analytical Procedures for Multiple Regression
and/or Related Tests ... 1470
1. Cross-validation of sample data 1470

VII. Additional Discussion of Multivariate Regression 1471
1. Final comments on multiple regression analysis 1471
2. Causal modeling: Path analysis and structural
equation modeling .. 1472
3. Brief note on logistic regression 1473

VIII. Additional Examples Illustrating the Use of Multivariate Regression 1474
Test 34: Hotelling's T^2 ... 1483
 I. Hypothesis Evaluated with Test and Relevant Background Information ... 1483
 II. Example .. 1483
 III. Null versus Alternative Hypotheses 1484
 IV. Test Computations .. 1485
 V. Interpretation of the Test Results 1486
 VI. Additional Analytical Procedures for Hotelling's T^2 and/or
 Related Tests .. 1488
 1. Additional analyses following the test of the omnibus null
 hypothesis ... 1488
 2. Test 34a: The single-sample Hotelling's T^2 1489
 3. Test 34b: The use of the single-sample Hotelling's T^2 to
 evaluate a dependent samples design 1491
 VII. Additional Discussion of Hotelling's T^2 1495
 1. Hotelling's T^2 and Mahalanobis' D^2 statistic 1495
 VIII. Additional Examples Illustrating the Use of Hotelling's T^2 1495

Test 35: Multivariate Analysis of Variance 1499
 I. Hypothesis Evaluated with Test and Relevant Background Information ... 1499
 II. Example .. 1500
 III. Null versus Alternative Hypotheses 1501
 IV. Test Computations .. 1502
 V. Interpretation of the Test Results 1503
 VI. Additional Analytical Procedures for the Multivariate Analysis of Variance
 and/or Related Tests ... 1510
 VII. Additional Discussion of the Multivariate Analysis of Variance 1510
 1. Conceptualizing the hypothesis for the multivariate analysis of
 variance within the context of a linear combination 1510
 2. Multicollinearity and the multivariate analysis of variance 1510
 VIII. Additional Examples Illustrating the Use of the Multivariate
 Analysis of Variance .. 1511

Test 36: Multivariate Analysis of Covariance 1515
 I. Hypothesis Evaluated with Test and Relevant Background Information ... 1515
 II. Example .. 1516
 III. Null versus Alternative Hypotheses 1517
 IV. Test Computations .. 1517
 V. Interpretation of the Test Results 1518
 VI. Additional Analytical Procedures for the Multivariate Analysis of
 Covariance and/or Related Tests 1521
 VII. Additional Discussion of the Multivariate Analysis of Covariance 1521
 1. Multiple covariates ... 1521
 VIII. Additional Examples Illustrating the Use of the Multivariate
 Analysis of Covariance .. 1522

Test 37: Discriminant Function Analysis 1525
 I. Hypothesis Evaluated with Test and Relevant Background Information ... 1525
 II. Examples .. 1527
 III. Null versus Alternative Hypotheses 1528
Table of Contents

IV. Test Computations ... 1529
V. Interpretation of the Test Results ... 1531
 Analysis of Example 37.1 ... 1531
 Analysis of Example 37.2 ... 1543
VI. Additional Analytical Procedures for Discriminant Function Analysis and/or Related Tests .. 1552
VII. Additional Discussion of Discriminant Function Analysis 1552
VIII. Additional Examples Illustrating the Use of Discriminant Function Analysis ... 1552

Test 38: Canonical Correlational .. 1557
 I. Hypothesis Evaluated with Test and Relevant Background Information ... 1557
 II. Example ... 1560
 III. Null versus Alternative Hypotheses 1560
 IV. Test Computations ... 1560
 V. Interpretation of the Test Results ... 1561
 VI. Additional Analytical Procedures for Canonical Correlation and/or Related Tests 1574
 VII. Additional Discussion of Canonical Correlation 1574
 VIII. Additional Examples Illustrating the Use of Canonical Correlation .. 1575

Test 39: Logistic Regression ... 1581
 I. Hypothesis Evaluated with Test and Relevant Background Information ... 1581
 II. Example ... 1584
 III. Null versus Alternative Hypotheses 1584
 IV. Test Computations ... 1587
 V. Interpretation of the Test Results ... 1590
 Results for a binary logistic regression with one predictor variable .. 1590
 Results for a binary logistic regression with multiple predictor variables .. 1598
 VI. Additional Analytical Procedures for Logistic Regression and/or Related Tests 1605
 VII. Additional Discussion of Logistic Regression 1606
 VIII. Additional Examples Illustrating the Use of Logistic Regression ... 1606

Test 40: Principal Components Analysis and Factor Analysis 1615
 I. Hypothesis Evaluated with Test and Relevant Background Information ... 1615
 II. Example ... 1618
 III. Null versus Alternative Hypotheses 1618
 IV. Test Computations ... 1618
 V. Interpretation of the Test Results ... 1622
 VI. Additional Analytical Procedures for Principal Components Analysis and Factor Analysis and/or Related Tests ... 1634
 1. Principal axis factor analysis of Example 40.1 ... 1634
 VII. Additional Discussion of Principal Components Analysis and Factor Analysis 1635
 1. Criticisms of factor analytic procedures .. 1635
 2. Cluster analysis .. 1635
 3. Multidimensional scaling .. 1636
VIII. Additional Examples Illustrating the Use of Principal Components Analysis and Factor Analysis ... 1637

Appendix: Tables ... 1647

Table A1. Table of the Normal Distribution .. 1651
Table A2. Table of Student’s t Distribution 1656
Table A3. Power Curves for Student’s t Distribution 1657
Table A4. Table of the Chi-Square Distribution 1661
Table A5. Table of Critical T Values for Wilcoxon’s Signed-Ranks and Matched-Pairs Signed-Ranks Tests .. 1662
Table A6. Table of the Binomial Distribution, Individual Probabilities 1663
Table A7. Table of the Binomial Distribution, Cumulative Probabilities ... 1666
Table A8. Table of Critical Values for the Single-Sample Runs Test 1669
Table A9. Table of the F*max Distribution 1670
Table A10. Table of the F Distribution .. 1671
Table A11. Table of Critical Values for Mann–Whitney U Statistic 1679
Table A12. Table of Sandler’s A Statistic .. 1681
Table A13. Table of the Studentized Range Statistic 1682
Table A14. Table of Dunnett’s Modified t Statistic for a Control Group Comparison ... 1684
Table A15. Graphs of the Power Function for the Analysis of Variance 1686
Table A16. Table of Critical Values for Pearson r 1690
Table A17. Table of Fisher’s z Transformation 1691
Table A18. Table of Critical Values for Spearman’s Rho 1692
Table A19. Table of Critical Values for Kendall’s Tau 1693
Table A20. Table of Critical Values for Kendall’s Coefficient of Concordance ... 1694
Table A21. Table of Critical Values for the Kolmogorov–Smirnov Goodness-of-Fit Test for a Single Sample 1695
Table A22. Table of Critical Values for the Lilliefors Test for Normality 1696
Table A23. Table of Critical Values for the Kolmogorov–Smirnov Test for Two Independent Samples .. 1697
Table A24. Table of Critical Values for the Jonckheere–Terpstra Test Statistic ... 1699
Table A25. Table of Critical Values for the Page Test Statistic 1701
Table A26. Table of Extreme Studentized Deviate Outlier Statistic 1703
Table A27. Table of Durbin–Watson Test Statistic 1704

Index ... 1707