Contents

List of Tables xiii
List of Figures xv
Acknowledgements xix
Preface xxi
Web site xxix

PART 1: INTRODUCTION

1 **HOW A META-ANALYSIS WORKS** 3
 - Introduction 3
 - Individual studies 3
 - The summary effect 5
 - Heterogeneity of effect sizes 6
 - Summary points 7

2 **WHY PERFORM A META-ANALYSIS** 9
 - Introduction 9
 - The streptokinase meta-analysis 10
 - Statistical significance 11
 - Clinical importance of the effect 12
 - Consistency of effects 12
 - Summary points 14

PART 2: EFFECT SIZE AND PRECISION

3 **OVERVIEW** 17
 - Treatment effects and effect sizes 17
 - Parameters and estimates 18
 - Outline of effect size computations 19

4 **EFFECT SIZES BASED ON MEANS** 21
 - Introduction 21
 - Raw (unstandardized) mean difference D 21
 - Standardized mean difference, d and g 25
 - Response ratios 30
 - Summary points 32
Performing a fixed-effect meta-analysis
Summary points

12 RANDOM-EFFECTS MODEL
Introduction
The true effect sizes
Impact of sampling error
Performing a random-effects meta-analysis
Summary points

13 FIXED-EFFECT VERSUS RANDOM-EFFECTS MODELS
Introduction
Definition of a summary effect
Estimating the summary effect
Extreme effect size in a large study or a small study
Confidence interval
The null hypothesis
Which model should we use?
Model should not be based on the test for heterogeneity
Concluding remarks
Summary points

14 WORKED EXAMPLES (PART 1)
Introduction
Worked example for continuous data (Part 1)
Worked example for binary data (Part 1)
Worked example for correlational data (Part 1)
Summary points

PART 4: HETEROGENEITY

15 OVERVIEW
Introduction
Nomenclature
Worked examples

16 IDENTIFYING AND QUANTIFYING HETEROGENEITY
Introduction
Isolating the variation in true effects
Computing Q
Estimating τ^2
The I^2 statistic
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical power for subgroup analyses and meta-regression</td>
<td>210</td>
</tr>
<tr>
<td>Summary points</td>
<td>211</td>
</tr>
</tbody>
</table>

PART 5: COMPLEX DATA STRUCTURES

22 OVERVIEW

23 INDEPENDENT SUBGROUPS WITHIN A STUDY
- Introduction | 217
- Combining across subgroups | 218
- Comparing subgroups | 222
- Summary points | 223

24 MULTIPLE OUTCOMES OR TIME-POINTS WITHIN A STUDY
- Introduction | 225
- Combining across outcomes or time-points | 226
- Comparing outcomes or time-points within a study | 233
- Summary points | 238

25 MULTIPLE COMPARISONS WITHIN A STUDY
- Introduction | 239
- Combining across multiple comparisons within a study | 239
- Differences between treatments | 240
- Summary points | 241

26 NOTES ON COMPLEX DATA STRUCTURES
- Introduction | 243
- Summary effect | 243
- Differences in effect | 244

PART 6: OTHER ISSUES

27 OVERVIEW

28 VOTE COUNTING - A NEW NAME FOR AN OLD PROBLEM
- Introduction | 251
- Why vote counting is wrong | 252
- Vote counting is a pervasive problem | 253
- Summary points | 255

29 POWER ANALYSIS FOR META-ANALYSIS
- Introduction | 257
- A conceptual approach | 257
- In context | 261
- When to use power analysis | 262
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning for precision rather than for power</td>
<td>263</td>
</tr>
<tr>
<td>Power analysis in primary studies</td>
<td>263</td>
</tr>
<tr>
<td>Power analysis for meta-analysis</td>
<td>267</td>
</tr>
<tr>
<td>Power analysis for a test of homogeneity</td>
<td>272</td>
</tr>
<tr>
<td>Summary points</td>
<td>275</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>30 PUBLICATION BIAS</th>
<th>277</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>277</td>
</tr>
<tr>
<td>The problem of missing studies</td>
<td>278</td>
</tr>
<tr>
<td>Methods for addressing bias</td>
<td>280</td>
</tr>
<tr>
<td>Illustrative example</td>
<td>281</td>
</tr>
<tr>
<td>The model</td>
<td>281</td>
</tr>
<tr>
<td>Getting a sense of the data</td>
<td>281</td>
</tr>
<tr>
<td>Is there evidence of any bias?</td>
<td>283</td>
</tr>
<tr>
<td>Is the entire effect an artifact of bias?</td>
<td>284</td>
</tr>
<tr>
<td>How much of an impact might the bias have?</td>
<td>286</td>
</tr>
<tr>
<td>Summary of the findings for the illustrative example</td>
<td>289</td>
</tr>
<tr>
<td>Some important caveats</td>
<td>290</td>
</tr>
<tr>
<td>Small-study effects</td>
<td>291</td>
</tr>
<tr>
<td>Concluding remarks</td>
<td>291</td>
</tr>
<tr>
<td>Summary points</td>
<td>291</td>
</tr>
</tbody>
</table>

PART 7: ISSUES RELATED TO EFFECT SIZE

| 31 OVERVIEW | 295|

<table>
<thead>
<tr>
<th>32 EFFECT SIZES RATHER THAN p-VALUES</th>
<th>297</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>297</td>
</tr>
<tr>
<td>Relationship between p-values and effect sizes</td>
<td>297</td>
</tr>
<tr>
<td>The distinction is important</td>
<td>299</td>
</tr>
<tr>
<td>The p-value is often misinterpreted</td>
<td>300</td>
</tr>
<tr>
<td>Narrative reviews vs. meta-analyses</td>
<td>301</td>
</tr>
<tr>
<td>Summary points</td>
<td>302</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33 SIMPSON'S PARADOX</th>
<th>303</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>303</td>
</tr>
<tr>
<td>Circumcision and risk of HIV infection</td>
<td>303</td>
</tr>
<tr>
<td>An example of the paradox</td>
<td>305</td>
</tr>
<tr>
<td>Summary points</td>
<td>308</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>34 GENERALITY OF THE BASIC INVERSE-VARIANCE METHOD</th>
<th>311</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>311</td>
</tr>
<tr>
<td>Other effect sizes</td>
<td>312</td>
</tr>
<tr>
<td>Other methods for estimating effect sizes</td>
<td>315</td>
</tr>
<tr>
<td>Individual participant data meta-analyses</td>
<td>316</td>
</tr>
</tbody>
</table>
PART 8: FURTHER METHODS

35 OVERVIEW

36 META-ANALYSIS METHODS BASED ON DIRECTION AND \textit{p}-VALUES
 Introduction
 Vote counting
 The sign test
 Combining \textit{p}-values
 Summary points

37 FURTHER METHODS FOR DICHOTOMOUS DATA
 Introduction
 Mantel-Haenszel method
 One-step (Peto) formula for odds ratio
 Summary points

38 PSYCHOMETRIC META-ANALYSIS
 Introduction
 The attenuating effects of artifacts
 Meta-analysis methods
 Example of psychometric meta-analysis
 Comparison of artifact correction with meta-regression
 Sources of information about artifact values
 How heterogeneity is assessed
 Reporting in psychometric meta-analysis
 Concluding remarks
 Summary points

PART 9: META-ANALYSIS IN CONTEXT

39 OVERVIEW

40 WHEN DOES IT MAKE SENSE TO PERFORM A META-ANALYSIS?
 Introduction
 Are the studies similar enough to combine?
 Can I combine studies with different designs?
 How many studies are enough to carry out a meta-analysis?
 Summary points

41 REPORTING THE RESULTS OF A META-ANALYSIS
 Introduction
 The computational model
Forest plots 366
Sensitivity analysis 368
Summary points 369

42 CUMULATIVE META-ANALYSIS 371
 Introduction 371
 Why perform a cumulative meta-analysis? 373
 Summary points 376

43 CRITICISMS OF META-ANALYSIS 377
 Introduction 377
 One number cannot summarize a research field 378
 The file drawer problem invalidates meta-analysis 378
 Mixing apples and oranges 379
 Garbage in, garbage out 380
 Important studies are ignored 381
 Meta-analysis can disagree with randomized trials 381
 Meta-analyses are performed poorly 384
 Is a narrative review better? 385
 Concluding remarks 386
 Summary points 386

PART 10: RESOURCES AND SOFTWARE 391

44 SOFTWARE 391
 Introduction 391
 The software 392
 Three examples of meta-analysis software 393
 Comprehensive Meta-Analysis (CMA) 2.0 395
 RevMan 5.0 398
 Stata macros with Stata 10.0 400
 Summary points 403

45 BOOKS, WEB SITES AND PROFESSIONAL ORGANIZATIONS 405
 Books on systematic review methods 405
 Books on meta-analysis 405
 Web sites 406

REFERENCES 409
INDEX 415