CONTENTS

Preface xxiv
How to use this book xxv
Acknowledgements xxix
Dedication xxxi
Symbols used in this book xxxii
Some maths revision xxxiv

1 Why is my evil lecturer forcing me to learn statistics? 1
 1.1. What will this chapter tell me? □ 1
 1.2. What the hell am I doing here? I don’t belong here □ 2
 1.3. Initial observation: finding something that needs explaining □ 4
 1.4. Generating theories and testing them □ 4
 1.5. Data collection 1: what to measure □ 7
 1.5.1. Variables □ 7
 1.5.2. Measurement error □ 11
 1.5.3. Validity and reliability □ 12
 1.6. Data collection 2: how to measure □ 13
 1.6.1. Correlational research methods □ 13
 1.6.2. Experimental research methods □ 13
 1.6.3. Randomization □ 17
 1.7. Analysing data □ 19
 1.7.1. Frequency distributions □ 19
 1.7.2. The centre of a distribution □ 21
 1.7.3. The dispersion in a distribution □ 24
 1.7.4. Using a frequency distribution to go beyond the data □ 25
 1.7.5. Fitting statistical models to the data □ 28
 What have I discovered about statistics? □ 29
 Key terms that I’ve discovered 29
 Smart Alex’s tasks 30
 Further reading 31
 Interesting real research 31

2 Everything you ever wanted to know about statistics (well, sort of) 32
 2.1. What will this chapter tell me? □ 32
 2.2. Building statistical models □ 33
2.3. Populations and samples ① 36
2.4. Simple statistical models ① 36
 2.4.1. The mean: a very simple statistical model ① 36
 2.4.2. Assessing the fit of the mean: sums of squares, variance
 and standard deviations ① 37
 2.4.3. Expressing the mean as a model ① 40
2.5. Going beyond the data ① 41
 2.5.1. The standard error ① 42
 2.5.2. Confidence intervals ② 43
2.6. Using statistical models to test research questions ① 49
 2.6.1. Test statistics ① 53
 2.6.2. One- and two-tailed tests ① 55
 2.6.3. Type I and Type II errors ① 56
 2.6.4. Effect sizes ① 57
 2.6.5. Statistical power ① 58
What have I discovered about statistics? ① 59
Key terms that I’ve discovered 60
Smart Alex’s tasks 60
Further reading 60
Interesting real research 61

3 The R environment 62

3.1. What will this chapter tell me? ① 62
3.2. Before you start ① 63
 3.2.1. The R-chitecture ① 63
 3.2.2. Pros and cons of R ① 64
 3.2.3. Downloading and installing R ① 65
 3.2.4. Versions of R ① 66
3.3. Getting started ① 66
 3.3.1. The main windows in R ① 67
 3.3.2. Menus in R ① 67
3.4. Using R ① 71
 3.4.1. Commands, objects and functions ① 71
 3.4.2. Using scripts ① 75
 3.4.3. The R workspace ① 76
 3.4.4. Setting a working directory ① 77
 3.4.5. Installing packages ① 78
 3.4.6. Getting help ① 80
3.5. Getting data into R ① 81
 3.5.1. Creating variables ① 81
 3.5.2. Creating dataframes ① 81
 3.5.3. Calculating new variables from existing ones ① 83
 3.5.4. Organizing your data ① 85
 3.5.5. Missing values ① 92
3.6. Entering data with R Commander ① 92
 3.6.1. Creating variables and entering data with R Commander ① 94
 3.6.2. Creating coding variables with R Commander ① 95
3.7. Using other software to enter and edit data ① 95
 3.7.1. Importing data ① 97
 3.7.2. Importing SPSS data files directly ① 99
4 Exploring data with graphs 116

4.1. What will this chapter tell me? 116
4.2. The art of presenting data 117
 4.2.1. Why do we need graphs 117
 4.2.2. What makes a good graph? 117
 4.2.3. Lies, damned lies, and … err … graphs 120
4.3. Packages used in this chapter 121
4.4. Introducing ggplot2 121
 4.4.1. The anatomy of a plot 121
 4.4.2. Geometric objects (geoms) 123
 4.4.3. Aesthetics 125
 4.4.4. The anatomy of the ggplot() function 127
 4.4.5. Stats and geoms 128
 4.4.6. Avoiding overplotting 130
 4.4.7. Saving graphs 131
 4.4.8. Putting it all together: a quick tutorial 132
4.5. Graphing relationships: the scatterplot 136
 4.5.1. Simple scatterplot 136
 4.5.2. Adding a funky line 138
 4.5.3. Grouped scatterplot 140
4.6. Histograms: a good way to spot obvious problems 142
4.7. Boxplots (box-whisker diagrams) 144
4.8. Density plots 148
4.9. Graphing means 149
 4.9.1. Bar charts and error bars 149
 4.9.2. Line graphs 155
4.10. Themes and options 161
 What have I discovered about statistics? 163
 R packages used in this chapter 163
 R functions used in this chapter 164
 Key terms that I’ve discovered 164
 Smart Alex’s tasks 164
 Further reading 164
 Interesting real research 165
5 Exploring assumptions

5.1. What will this chapter tell me? ①
5.2. What are assumptions? ①
5.3. Assumptions of parametric data ①
5.4. Packages used in this chapter ①
5.5. The assumption of normality ①
 5.5.1. Oh no, it’s that pesky frequency distribution again:
 checking normality visually ①
 5.5.2. Quantifying normality with numbers ①
 5.5.3. Exploring groups of data ①
5.6. Testing whether a distribution is normal ①
 5.6.1. Doing the Shapiro–Wilk test in R ①
 5.6.2. Reporting the Shapiro–Wilk test ①
5.7. Testing for homogeneity of variance ①
 5.7.1. Levene’s test ①
 5.7.2. Reporting Levene’s test ①
 5.7.3. Hartley’s F-max: the variance ratio ①
5.8. Correcting problems in the data ①
 5.8.1. Dealing with outliers ①
 5.8.2. Dealing with non-normality and unequal variances ①
 5.8.3. Transforming the data using R ①
 5.8.4. When it all goes horribly wrong ①

What have I discovered about statistics? ①
R packages used in this chapter
R functions used in this chapter
Key terms that I’ve discovered
Smart Alex’s tasks
Further reading

6 Correlation

6.1. What will this chapter tell me? ①
6.2. Looking at relationships ①
6.3. How do we measure relationships? ①
 6.3.1. A detour into the murky world of covariance ①
 6.3.2. Standardization and the correlation coefficient ①
 6.3.3. The significance of the correlation coefficient ①
 6.3.4. Confidence intervals for r ①
 6.3.5. A word of warning about interpretation: causality ①
6.4. Data entry for correlation analysis ①
6.5. Bivariate correlation ①
 6.5.1. Packages for correlation analysis in R ①
 6.5.2. General procedure for correlations using R Commander ①
 6.5.3. General procedure for correlations using R ①
 6.5.4. Pearson’s correlation coefficient ①
 6.5.5. Spearman’s correlation coefficient ①
 6.5.6. Kendall’s tau (non-parametric) ①
 6.5.7. Bootstrapping correlations ①
 6.5.8. Biserial and point-biserial correlations ①
7 Regression

7.1. What will this chapter tell me? 245
7.2. An introduction to regression 246
 7.2.1. Some important information about straight lines 247
 7.2.2. The method of least squares 248
 7.2.3. Assessing the goodness of fit: sums of squares, R and R^2 249
 7.2.4. Assessing individual predictors 252
7.3. Packages used in this chapter 253
7.4. General procedure for regression in R 254
 7.4.1. Doing simple regression using R Commander 254
 7.4.2. Regression in R 255
7.5. Interpreting a simple regression 257
 7.5.1. Overall fit of the object model 258
 7.5.2. Model parameters 259
 7.5.3. Using the model 260
7.6. Multiple regression: the basics 261
 7.6.1. An example of a multiple regression model 261
 7.6.2. Sums of squares, R and R^2 262
 7.6.3. Parsimony-adjusted measures of fit 263
 7.6.4. Methods of regression 263
7.7. How accurate is my regression model? 266
 7.7.1. Assessing the regression model I: diagnostics 266
 7.7.2. Assessing the regression model II: generalization 271
7.8. How to do multiple regression using R Commander and R 276
 7.8.1. Some things to think about before the analysis 276
 7.8.2. Multiple regression: running the basic model 277
 7.8.3. Interpreting the basic multiple regression 280
 7.8.4. Comparing models 284
7.9. Testing the accuracy of your regression model 287
 7.9.1. Diagnostic tests using R Commander 287
 7.9.2. Outliers and influential cases 288
8 Logistic regression

8.1. What will this chapter tell me?

8.2. Background to logistic regression

8.3. What are the principles behind logistic regression?
 8.3.1. Assessing the model: the log-likelihood statistic
 8.3.2. Assessing the model: the deviance statistic
 8.3.3. Assessing the model: R and R^2
 8.3.4. Assessing the model: information criteria
 8.3.5. Assessing the contribution of predictors: the z-statistic
 8.3.6. The odds ratio
 8.3.7. Methods of logistic regression

8.4. Assumptions and things that can go wrong
 8.4.1. Assumptions
 8.4.2. Incomplete information from the predictors
 8.4.3. Complete separation

8.5. Packages used in this chapter

8.6. Binary logistic regression: an example that will make you feel eel
 8.6.1. Preparing the data
 8.6.2. The main logistic regression analysis
 8.6.3. Basic logistic regression analysis using R
 8.6.4. Interpreting a basic logistic regression
 8.6.5. Model 1: Intervention only
 8.6.6. Model 2: Intervention and Duration as predictors
 8.6.7. Casewise diagnostics in logistic regression
 8.6.8. Calculating the effect size

8.7. How to report logistic regression

8.8. Testing assumptions: another example
 8.8.1. Testing for multicollinearity
 8.8.2. Testing for linearity of the logit

8.9. Predicting several categories: multinomial logistic regression
 8.9.1. Running multinomial logistic regression in R
 8.9.2. Interpreting the multinomial logistic regression output

8.10. Robust regression: bootstrapping

8.11. How to report multiple regression

8.12. Categorical predictors and multiple regression
 8.12.1. Dummy coding
 8.12.2. Regression with dummy variables

What have I discovered about statistics?
R packages used in this chapter
R functions used in this chapter
Key terms that I’ve discovered
Smart Alex’s tasks
Further reading
Interesting real research
9 Comparing two means

9.1. What will this chapter tell me?
9.2. Packages used in this chapter
9.3. Looking at differences
 9.3.1. A problem with error bar graphs of repeated-measures designs
 9.3.2. Step 1: calculate the mean for each participant
 9.3.3. Step 2: calculate the grand mean
 9.3.4. Step 3: calculate the adjustment factor
 9.3.5. Step 4: create adjusted values for each variable
9.4. The t-test
 9.4.1. Rationale for the t-test
 9.4.2. The t-test as a general linear model
 9.4.3. Assumptions of the t-test
9.5. The independent t-test
 9.5.1. The independent t-test equation explained
 9.5.2. Doing the independent t-test
9.6. The dependent t-test
 9.6.1. Sampling distributions and the standard error
 9.6.2. The dependent t-test equation explained
 9.6.3. Dependent t-tests using R
9.7. Between groups or repeated measures?
 What have I discovered about statistics?
 R packages used in this chapter
 R functions used in this chapter
 Key terms that I've discovered
 Smart Alex's tasks
 Further reading
 Interesting real research

10 Comparing several means: ANOVA (GLM 1)

10.1. What will this chapter tell me?
10.2. The theory behind ANOVA
 10.2.1. Inflated error rates
 10.2.2. Interpreting F
 10.2.3. ANOVA as regression
 10.2.4. Logic of the F-ratio
 10.2.5. Total sum of squares (SS_{T})
 10.2.6. Model sum of squares (SS_{M})
 10.2.7. Residual sum of squares (SS_{e})
 10.2.8. Mean squares
11. Analysis of covariance, ANCOVA (GLM 2) 462

11.1. What will this chapter tell me? 462
11.2. What is ANCOVA? 463
11.3. Assumptions and issues in ANCOVA 464
 11.3.1. Independence of the covariate and treatment effect 464
 11.3.2. Homogeneity of regression slopes 466
11.4. ANCOVA using R 467
 11.4.1. Packages for ANCOVA in R 467
 11.4.2. General procedure for ANCOVA 468
 11.4.3. Entering data 468
 11.4.4. ANCOVA using R Commander 471
 11.4.5. Exploring the data 471
 11.4.6. Are the predictor variable and covariate independent? 473
 11.4.7. Fitting an ANCOVA model 473
 11.4.8. Interpreting the main ANCOVA model 477
11.4.9. Planned contrasts in ANCOVA 479
11.4.10. Interpreting the covariate 480
11.4.11. Post hoc tests in ANCOVA 481
11.4.12. Plots in ANCOVA 482
11.4.13. Some final remarks 482
11.4.14. Testing for homogeneity of regression slopes 483

11.5. Robust ANCOVA 484
11.6. Calculating the effect size 491
11.7. Reporting results 494

What have I discovered about statistics? 495
R packages used in this chapter 495
R functions used in this chapter 496
Key terms that I’ve discovered 496
Smart Alex’s tasks 496
Further reading 497
Interesting real research 497

12 Factorial ANOVA (GLM 3) 498

12.1. What will this chapter tell me? 498
12.2. Theory of factorial ANOVA (independent design) 499
12.2.1. Factorial designs 499
12.3. Factorial ANOVA as regression 501
12.3.1. An example with two independent variables 501
12.3.2. Extending the regression model 501
12.4. Two-way ANOVA: behind the scenes 505
12.4.1. Total sums of squares (SS,) 506
12.4.2. The model sum of squares (SS,) 507
12.4.3. The residual sum of squares (SS,) 510
12.4.4. The F-ratios 511
12.5. Factorial ANOVA using R 511
12.5.1. Packages for factorial ANOVA in R 511
12.5.2. General procedure for factorial ANOVA 512
12.5.3. Factorial ANOVA using R Commander 512
12.5.4. Entering the data 513
12.5.5. Exploring the data 516
12.5.6. Choosing contrasts 518
12.5.7. Fitting a factorial ANOVA model 520
12.5.8. Interpreting factorial ANOVA 520
12.5.9. Interpreting contrasts 524
12.5.10. Simple effects analysis 525
12.5.11. Post hoc analysis 528
12.5.12. Overall conclusions 530
12.5.13. Plots in factorial ANOVA 530

12.6. Interpreting interaction graphs 530
12.7. Robust factorial ANOVA 534
12.8. Calculating effect sizes 542
12.9. Reporting the results of two-way ANOVA 544
What have I discovered about statistics? 546
13 Repeated-measures designs (GLM 4)

13.1. What will this chapter tell me?
13.2. Introduction to repeated-measures designs
 13.2.1. The assumption of sphericity
 13.2.2. How is sphericity measured?
 13.2.3. Assessing the severity of departures from sphericity
 13.2.4. What is the effect of violating the assumption of sphericity?
 13.2.5. What do you do if you violate sphericity?
13.3. Theory of one-way repeated-measures ANOVA
 13.3.1. The total sum of squares (SS_t)
 13.3.2. The within-participant sum of squares (SS_w)
 13.3.3. The model sum of squares (SS_m)
 13.3.4. The residual sum of squares (SS_r)
 13.3.5. The mean squares
 13.3.6. The F-ratio
 13.3.7. The between-participant sum of squares
13.4. One-way repeated-measures designs using R
 13.4.1. Packages for repeated measures designs in R
 13.4.2. General procedure for repeated-measures designs
 13.4.3. Repeated-measures ANOVA using R Commander
 13.4.4. Entering the data
 13.4.5. Exploring the data
 13.4.6. Choosing contrasts
 13.4.7. Analysing repeated measures: two ways to skin a .dat
 13.4.8. Robust one-way repeated-measures ANOVA
13.5. Effect sizes for repeated-measures designs
13.6. Reporting one-way repeated-measures designs
13.7. Factorial repeated-measures designs
 13.7.1. Entering the data
 13.7.2. Exploring the data
 13.7.3. Setting contrasts
 13.7.4. Factorial repeated-measures ANOVA
 13.7.5. Factorial repeated-measures designs as a GLM
 13.7.6. Robust factorial repeated-measures ANOVA
13.8. Effect sizes for factorial repeated-measures designs
13.9. Reporting the results from factorial repeated-measures designs
 What have I discovered about statistics?
 R packages used in this chapter
 R functions used in this chapter
 Key terms that I’ve discovered
 Smart Alex’s tasks
14 Mixed designs (GLM 5) 604

14.1. What will this chapter tell me? 604
14.2. Mixed designs 605
14.3. What do men and women look for in a partner? 606
14.4. Entering and exploring your data 606
 14.4.1. Packages for mixed designs in R 606
 14.4.2. General procedure for mixed designs 608
 14.4.3. Entering the data 608
 14.4.4. Exploring the data 610
14.5. Mixed ANOVA 613
14.6. Mixed designs as a GLM 617
 14.6.1. Setting contrasts 617
 14.6.2. Building the model 619
 14.6.3. The main effect of gender 622
 14.6.4. The main effect of looks 623
 14.6.5. The main effect of personality 624
 14.6.6. The interaction between gender and looks 625
 14.6.7. The interaction between gender and personality 628
 14.6.8. The interaction between looks and personality 630
 14.6.9. The interaction between looks, personality and gender 635
 14.6.10. Conclusions 639
14.7. Calculating effect sizes 640
14.8. Reporting the results of mixed ANOVA 641
14.9. Robust analysis for mixed designs 643
 What have I discovered about statistics? 650
 R packages used in this chapter 650
 R functions used in this chapter 651
 Key terms that I’ve discovered 651
 Smart Alex’s tasks 651
 Further reading 652
 Interesting real research 652

15 Non-parametric tests 653

15.1. What will this chapter tell me? 653
15.2. When to use non-parametric tests 654
15.3. Packages used in this chapter 655
15.4. Comparing two independent conditions: the Wilcoxon rank-sum test 655
 15.4.1. Theory of the Wilcoxon rank-sum test 655
 15.4.2. Inputting data and provisional analysis 659
 15.4.3. Running the analysis using R Commander 661
 15.4.4. Running the analysis using R 662
 15.4.5. Output from the Wilcoxon rank-sum test 664
 15.4.6. Calculating an effect size 664
 15.4.7. Writing the results 666
15.5. Comparing two related conditions: the Wilcoxon signed-rank test
15.5.1. Theory of the Wilcoxon signed-rank test
15.5.2. Running the analysis with R Commander
15.5.3. Running the analysis using R
15.5.4. Wilcoxon signed-rank test output
15.5.5. Calculating an effect size
15.5.6. Writing the results

15.6. Differences between several independent groups:
the Kruskal–Wallis test
15.6.1. Theory of the Kruskal–Wallis test
15.6.2. Inputting data and provisional analysis
15.6.3. Doing the Kruskal–Wallis test using R Commander
15.6.4. Doing the Kruskal–Wallis test using R
15.6.5. Output from the Kruskal–Wallis test
15.6.6. Post hoc tests for the Kruskal–Wallis test
15.6.7. Testing for trends: the Jonckheere–Terpstra test
15.6.8. Calculating an effect size
15.6.9. Writing and interpreting the results

15.7. Differences between several related groups: Friedman’s ANOVA
15.7.1. Theory of Friedman’s ANOVA
15.7.2. Inputting data and provisional analysis
15.7.3. Doing Friedman’s ANOVA in R Commander
15.7.4. Friedman’s ANOVA using R
15.7.5. Output from Friedman’s ANOVA
15.7.6. Post hoc tests for Friedman’s ANOVA
15.7.7. Calculating an effect size
15.7.8. Writing and interpreting the results
What have I discovered about statistics?
R packages used in this chapter
R functions used in this chapter
Key terms that I’ve discovered
Smart Alex’s tasks
Further reading
Interesting real research

16 Multivariate analysis of variance (MANOVA)

16.1. What will this chapter tell me?
16.2. When to use MANOVA

16.3. Introduction: similarities to and differences from ANOVA
16.3.1. Words of warning
16.3.2. The example for this chapter

16.4. Theory of MANOVA
16.4.1. Introduction to matrices
16.4.2. Some important matrices and their functions
16.4.3. Calculating MANOVA by hand: a worked example
16.4.4. Principle of the MANOVA test statistic

16.5. Practical issues when conducting MANOVA
16.5.1. Assumptions and how to check them
16.5.2. Choosing a test statistic ③
16.5.3. Follow-up analysis ③

16.6. MANOVA using R ②
16.6.1. Packages for factorial ANOVA in R ①
16.6.2. General procedure for MANOVA ①
16.6.3. MANOVA using R Commander ②
16.6.4. Entering the data ③
16.6.5. Exploring the data ②
16.6.6. Setting contrasts ③
16.6.7. The MANOVA model ②
16.6.8. Follow-up analysis: univariate test statistics ②
16.6.9. Contrasts ③

16.7. Robust MANOVA ③
16.8. Reporting results from MANOVA ②
16.9. Following up MANOVA with discriminant analysis ③
16.10. Reporting results from discriminant analysis ②
16.11. Some final remarks ③
16.11.1. The final interpretation ③
16.11.2. Univariate ANOVA or discriminant analysis?

What have I discovered about statistics? ②
R packages used in this chapter ④
R functions used in this chapter ④
Key terms that I’ve discovered ④
Smart Alex’s tasks ④
Further reading ④
Interesting real research ④

17 Exploratory factor analysis ①

17.1. What will this chapter tell me? ①
17.2. When to use factor analysis ②
17.3. Factors ③
17.3.1. Graphical representation of factors ③
17.3.2. Mathematical representation of factors ②
17.3.3. Factor scores ③
17.3.4. Choosing a method ③
17.3.5. Communality ③
17.3.6. Factor analysis vs. principal components analysis ③
17.3.7. Theory behind principal components analysis ③
17.3.8. Factor extraction: eigenvalues and the scree plot ③
17.3.9. Improving interpretation: factor rotation ③

17.4. Research example ③
17.4.1. Sample size ③
17.4.2. Correlations between variables ③
17.4.3. The distribution of data ③

17.5. Running the analysis with R Commander ①
17.6. Running the analysis with R ①
17.6.1. Packages used in this chapter ①
17.6.2. Initial preparation and analysis ①
18. Categorical data

18.1. What will this chapter tell me?
18.2. Packages used in this chapter
18.3. Analysing categorical data
18.4. Theory of analysing categorical data
 18.4.1. Pearson’s chi-square test
 18.4.2. Fisher’s exact test
 18.4.3. The likelihood ratio
 18.4.4. Yates’s correction
18.5. Assumptions of the chi-square test
18.6. Doing the chi-square test using R
 18.6.1. Entering data: raw scores
 18.6.2. Entering data: the contingency table
 18.6.3. Running the analysis with R Commander
 18.6.4. Running the analysis using R
 18.6.5. Output from the `CrossTable()` function
 18.6.6. Breaking down a significant chi-square test with standardized residuals
 18.6.7. Calculating an effect size
 18.6.8. Reporting the results of chi-square
18.7. Several categorical variables: loglinear analysis
 18.7.1. Chi-square as regression
 18.7.2. Loglinear analysis
18.8. Assumptions in loglinear analysis
18.9. Loglinear analysis using R
 18.9.1. Initial considerations
 18.9.2. Loglinear analysis as a chi-square test
 18.9.3. Output from loglinear analysis as a chi-square test
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.9.4.</td>
<td>Loglinear analysis</td>
<td>845</td>
</tr>
<tr>
<td>18.10.</td>
<td>Following up loglinear analysis</td>
<td>850</td>
</tr>
<tr>
<td>18.11.</td>
<td>Effect sizes in loglinear analysis</td>
<td>851</td>
</tr>
<tr>
<td>18.12.</td>
<td>Reporting the results of loglinear analysis</td>
<td>851</td>
</tr>
<tr>
<td></td>
<td>What have I discovered about statistics?</td>
<td>852</td>
</tr>
<tr>
<td></td>
<td>R packages used in this chapter</td>
<td>853</td>
</tr>
<tr>
<td></td>
<td>R functions used in this chapter</td>
<td>853</td>
</tr>
<tr>
<td></td>
<td>Key terms that I’ve discovered</td>
<td>853</td>
</tr>
<tr>
<td></td>
<td>Smart Alex’s tasks</td>
<td>853</td>
</tr>
<tr>
<td></td>
<td>Further reading</td>
<td>854</td>
</tr>
<tr>
<td></td>
<td>Interesting real research</td>
<td>854</td>
</tr>
</tbody>
</table>

19 Multilevel linear models | 855 |

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1.</td>
<td>What will this chapter tell me?</td>
<td>855</td>
</tr>
<tr>
<td>19.2.</td>
<td>Hierarchical data</td>
<td>856</td>
</tr>
<tr>
<td>19.2.1.</td>
<td>The intraclass correlation</td>
<td>859</td>
</tr>
<tr>
<td>19.2.2.</td>
<td>Benefits of multilevel models</td>
<td>859</td>
</tr>
<tr>
<td>19.3.</td>
<td>Theory of multilevel linear models</td>
<td>860</td>
</tr>
<tr>
<td>19.3.1.</td>
<td>An example</td>
<td>861</td>
</tr>
<tr>
<td>19.3.2.</td>
<td>Fixed and random coefficients</td>
<td>862</td>
</tr>
<tr>
<td>19.4.</td>
<td>The multilevel model</td>
<td>865</td>
</tr>
<tr>
<td>19.4.1.</td>
<td>Assessing the fit and comparing multilevel models</td>
<td>867</td>
</tr>
<tr>
<td>19.4.2.</td>
<td>Types of covariance structures</td>
<td>868</td>
</tr>
<tr>
<td>19.5.</td>
<td>Some practical issues</td>
<td>870</td>
</tr>
<tr>
<td>19.5.1.</td>
<td>Assumptions</td>
<td>870</td>
</tr>
<tr>
<td>19.5.2.</td>
<td>Sample size and power</td>
<td>870</td>
</tr>
<tr>
<td>19.5.3.</td>
<td>Centring variables</td>
<td>871</td>
</tr>
<tr>
<td>19.6.</td>
<td>Multilevel modelling in R</td>
<td>873</td>
</tr>
<tr>
<td>19.6.1.</td>
<td>Packages for multilevel modelling in R</td>
<td>873</td>
</tr>
<tr>
<td>19.6.2.</td>
<td>Entering the data</td>
<td>873</td>
</tr>
<tr>
<td>19.6.3.</td>
<td>Picturing the data</td>
<td>874</td>
</tr>
<tr>
<td>19.6.4.</td>
<td>Ignoring the data structure: ANOVA</td>
<td>874</td>
</tr>
<tr>
<td>19.6.5.</td>
<td>Ignoring the data structure: ANCOVA</td>
<td>876</td>
</tr>
<tr>
<td>19.6.6.</td>
<td>Assessing the need for a multilevel model</td>
<td>878</td>
</tr>
<tr>
<td>19.6.7.</td>
<td>Adding in fixed effects</td>
<td>881</td>
</tr>
<tr>
<td>19.6.8.</td>
<td>Introducing random slopes</td>
<td>884</td>
</tr>
<tr>
<td>19.6.9.</td>
<td>Adding an interaction term to the model</td>
<td>886</td>
</tr>
<tr>
<td>19.7.</td>
<td>Growth models</td>
<td>892</td>
</tr>
<tr>
<td>19.7.1.</td>
<td>Growth curves (polynomials)</td>
<td>892</td>
</tr>
<tr>
<td>19.7.2.</td>
<td>An example: the honeymoon period</td>
<td>894</td>
</tr>
<tr>
<td>19.7.3.</td>
<td>Restructuring the data</td>
<td>895</td>
</tr>
<tr>
<td>19.7.4.</td>
<td>Setting up the basic model</td>
<td>895</td>
</tr>
<tr>
<td>19.7.5.</td>
<td>Adding in time as a fixed effect</td>
<td>897</td>
</tr>
<tr>
<td>19.7.6.</td>
<td>Introducing random slopes</td>
<td>897</td>
</tr>
<tr>
<td>19.7.7.</td>
<td>Modelling the covariance structure</td>
<td>897</td>
</tr>
<tr>
<td>19.7.8.</td>
<td>Comparing models</td>
<td>899</td>
</tr>
<tr>
<td>19.7.9.</td>
<td>Adding higher-order polynomials</td>
<td>901</td>
</tr>
<tr>
<td>19.7.10.</td>
<td>Further analysis</td>
<td>905</td>
</tr>
</tbody>
</table>